Invent. math. 128, 207-302 (1997) .
Inventiones

mathematicae
© Springer-Verlag 1997

Canonical desingularization in characteristic zero
by blowing up the maximum strata
of a local invariant

Edward Bierstone, Pierre D. Milman*

Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 1A1
(e-mail: bierston@math.toronto.edu; milman@math.toronto.edu)

Oblatum 27-VI1-1995 & 30-V-1996

Dedicated to Heisuke Hironaka

Summary. This article contains an elementary constructive proof of resolution of
singularities in characteristic zero. Our proof applies in particular to schemes of
finite type and to analytic spaces (so we recover the great theorems of Hironaka).
We introduce a discrete local invariant jp(@) whose maximum locus determines

a smooth centre of blowing up, leading to desingularization. To defing iwve

need only to work with a category of local-ringed spa¥es (|X|, %) satisfying
certain natural conditions. H € |X]|, then ink(a) depends only on@_]a. More
generally, iny is defined inductively after any sequence of blowings-up whose
centres have only normal crossings with respect to the exceptional divisors and lie
in the constant loci of iny(-). The paper is self-contained and includes detailed
examples. One of our goals is that the reader understand the desingularization
theorem, rather than simply “know” it is true.
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Chapter I. Introduction

This article contains an elementary constructive proof of resolution of singulari-
ties in characteristic zerd will denote a field of characteristic zero throughout
the paper. Our proof applies to a scheXhef finite type overk, or to an analytic
spaceX overk (in the case that has a complete valuation); we recover, in par-
ticular, the great theorems of Hironaka [H1,2], [AHV1,2]. But our work neither
was conceived nor is written in the modern language of algebraic geometry. We
introduce a discrete local invariant ip(a) whose maximum locus determines
a centre of blowing up, leading to desingularization. To defing jve need
only to work with a category 4 of local-ringed spaceX = (|X|, @) over k
satisfying certain mild conditions (Remark 1.5), although further restrictions on
.-¢ are needed for global resolution of singularities.

If a € |X|, then ink(a) depends only on the completed local rin@a.
In general, iny is defined recursively over a sequence of blowings-up whose
centres have only normal crossings with respect to the exceptional divisors and lie
in the constant loci of iny. (See (1.2).) iny takes only finitely many maximum
values (at least locally). Moreover, its maximum locus has only normal crossings
and each of its local components extends to a global smooth subspace, justifying
the philosophy that “a sufficiently good local choice [of centre of blowing-up]
should globalize automatically” [BM4].

(0.1) Our desingularization algorithm applies to the following classes of
spaces:

(1) Algebraic.Schemes of finite type ovér(cf. [H1]). Algebraic spaces over
k (in the sense of Artin [Ar], Knutson [Kn]). Restrictions of schemeésf finite
type overk to their k-rational points|X|k. (Such spaces might be the natural
object of study when our main interest lies in theational points; e.g., for real
algebraic varieties.)

(2) Analytic. Real or complex analytic spaces (cf. [H2], [AHV1,2}-adic
analytic spaces in the sense of Serre [Se] or Berkovich [Ber].

(3) “Quasianalytic hypersurfaces”, defined by sheaves of principal ideals, each
locally generated by a single quasianalytic function, on quasianalytic manifolds
in the sense of E.M. Dyn’kin [D] (a class intermediate between analytic and
C).
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In each of the classes of (0.1), a spaceés locally a subspace of a manifold,
or smooth spaceyl = (|M |, ). For the purpose of global desingularization, a
key property of our category of spaceg is the following:

(0.2) A manifoldM in .4 can be covered by “regular coordinate charts”
U: the coordinatesxg,...,%,) on U are “regular functions” orlJ (i.e., each
% € (u(U)) and the partial derivative§l®!/gx® = goat-+an /gx ... gxgn
make sense as transformatiofig (U) — @ (U). Moreover, for eacla € U,
there is an injective “Taylor series homomorphisifa: Gy a — Fa[[X]] =
Fa[[ X1, ..., Xa]l, where T, denotes the residue fieldy a/my ,, such thatT,

induces an isomorphisreﬁA,v. ,ai}Fa[[X]] and T, commutes with differentiation:
Ta 0 (9l°1/0x®) = (01*1 J9X*) 0 Ty, for all a € N". (my , denotes the maximal
ideal of % a.)

In Sect. 3 below, we will give a more precise list of the properties of our
category of spaces# that we use to prove global desingularization. As an
application of our theorem, we show that desingularization (in the hypersurface
case) implies Iojasiewicz’s inequalities (Sect. 2). (These inequalities seem to be
new for quasianalytic functions in dimension 2.) Our invariant can also be
applied to desingularization of “quasi-Noetherian spaces”, generalizing Pfaffian
varieties in the sense of Khovanskii.

Our results here were announced in [BM6], and extend techniques introduced
in [BM3] and [BM4]. When we began thinking about this subject more than fif-
teen years ago, we were motivated by a simple desire to understand how to
resolve singularities. One of our goals is that the reader understand the desin-
gularization theorem, rather than simply “know” it is true. We believe that the
invariant iny is of interest as a local measure of singularity, beyond desingular-
ization itself. Significant general features of this work in comparison to previous
published treatments include: (i) Our desingularization theorems are canonical
(cf. Remark 1.16 ff. and Sect. 13). (ii) We isolate local properties of an invariant
(Theorem 1.14) from which globalization is automatic (Remark 1.15 ff. or 10.3
ff.). (iii) Our proof in the case of a hypersurface (a space defined locally by a
single equation) does not involve passing to higher codimension (as in [H1]).

Our notion of “presentation” (Sects. 1,4) has much in common with Hiron-
aka’s idea of “strong local equivalence” of idealistic exponents [H3], although
the analogy with [H3] does not seem to go beyond “presentation of the Hilbert-
Samuel function” (in the language of this article). Our proof of resolution of
singularities combines the uniformization algorithm of [BM3, Sect. 4] with the
way we structure the notion of presentation. Essential points include the way we
encode the history of the resolution process, originating in [BM3, Sect. 4] (and
used in a similar way in [V1]), and the introduction of “exceptional blowings-up”
(Sect. 4). We use these notions to develop a calculus for resolving singularities
(cf. Example 2.1). The idea is to introduce new variables into the equations of
a variety (by taking products with lines and test blowings-up) in a way that
isolates invariant “blocks” representing important geometric features (cf. 1.11,
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3.25). The idea of using test blowings-up to distinguish invariants occurs in [H3]
(as Villamayor pointed out to us in 1990), as well as in [Ab2] (cf. [Li]).

Our “presentation” is by “regular functions” (functions in the class consid-
ered). Lack of such a presentation is a source of difficulty in previous treatments
of desingularization. Regularity makes our algorithm work in the general context
of the paper, for naive reasons. Ideas important to the general case (Ch. Ill) are
isolation of the division properties of a local ideal that survive locally throughout
the Samuel stratum (Sect. 7.2), an elementary stabilization theorem for homoge-
neous polynomials (Sect. 8), and an “implicit differention” property (referred to
in 1.19, but realized a little differently in Sect. 9).

Notwithstanding the comparisons made above, we admit having not fully
understood any other proof of desingularization. At the same time, our debt to
the philosophy of Hironaka is greater than can be measured by precise refer-
ences to his results. For a guide to the literature before 1976, we recommend
Hironaka's bibliographical commentary in [H3]; our references include the more
recent publications that we know of. Mark Spivakovsky has announced a proof
of desingularization of arbitrary excellent schemes [Sp]. (A weaker theorem for
any characteristic has been proved by de Jong [dJ].)

We are happy to thank Christof Waltinger for reading the manuscript; his
inquiring about our algorithm in examples made us aware of an error in an
earlier version of Sect. 12.

Before formulating our results in a general way (Sect. 1), it might be worth
describing some of the ideas: L¥t denote a hypersurface (defined locally by
a single equatiori (x) = 0) in a manifoldM. Let a € X and letu,(f) denote
the order of vanishing of at a; sayd = ua(f). In this sketch, let us consider
X to benonsingularat a if f = z% (in germs ata; necessarilyua(z) = 1).
In general, we can choose coordinates (xy, ..., X,) such thatg?f /oxd # 0
in a neighbourhood of; then the equationaf—f /ox9-1)(x) = O defines a
submanifoldN of codimension 1 (in this neighbourhood); cf. Sect. 3. cgt
be the restriction tdN of 99f /Oxy, 0 < q < d — 2. (For example, iff (x) =
Co(X) +Cr (X)X +- - - +Cq_1(X)xI 1 +x9, wherexX = (xq, ..., X,_1), and we assume
by completing thed’'th power thatcy_; = 0, thenN is given byx, = 0 and the
coefficientscy have the meaning above.) Tlog are regular functions oN, as
in (0.2).

Let S 4y denote the “equimultiple locus{x : py(f) =d}. It is easy to see
that Ss 4y = S, whereSy, :={x e N: pycq>d—-q, q=0,...,d — 2} and
F = {(cq,d —q)}. X is nonsingular a& if and only if all ¢ = 0 (neara); i.e.,
Sr.a) =N.

Consider the effect of a blowing-up with smooth centreC C Sy gy (cf.
Sect. 3).X lifts to a hypersurfaceX’ (the “strict transform” ofX), defined by
f/(y) := yo,af (o(y)), whereye, denotes the “exceptional divisor” (i.e., the “ex-
ceptional hypersurface® = ¢—1(C) is given byyeyx = 0). The corresponding
transformation of coefficients is

(03) g = Yexs Veqoo, 0<g<d-2
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as functions (strictly speaking, defined locally up to an invertible factor), on the
strict transformN’ of N; clearly o(N’) € N. The formula for strict transform
shows that ifa’ € o~(a), then . (f’) < d, and if uy(f’) = d thena’ € N’
and Sy ) = Sy, Where. 72" := {(c},d — q)} (cf. 5.1 and 4.12). Likewise after
a finite sequence of blowings-up with centres in the equimultiple loci of the
successive strict transforms.

Suppose, for example, that

(0.4) )T = (xDYci(x), 0<q<d-2

where 2 = (21,...,2,_1) and eachd!f2 is a nonnegative integex :=

xlQl i ~an1‘1‘1 (with respect to coordinategy( . . ., X,—1) of N) and some; (a) #

0. ((0.4) reflects the transformation law (0.8); is used to factor with allcg

regular. We will writed(a) = d, 2(a) = 2.) ThenSy.q) = {Xx € N 1 ux? > 1}.

SoSs.q) = UZ, wherezy :={x e N: x =0ifj €1} andl runs over the
|

minimal subsets of 1,...,n — 1} such that)_ 2 > 1, i.e., over the subsets of
jel
{%,...,n — 1} such that

0< > 0-1<0, foralli el .
jel
Suppose that is the blowing-up with centreC = 7, for some such . If
a’ € oY) and ux(f’) = d, thena’ € N’; in this casea’ lies in a coordinate
chart forN’ in which o has the following form, for somee I: X =vi, X = ViV,
if j € 1\{i}, andx =y; if j 1. Then each)®/@- = (yQ')‘“c;; o o, where
Q= ifj #i, and ) = Z} 2 —1 < (. Since 1< || < |£2|, where
IS

|2 =21+ + 2,4, d(@) < d(a) after at mostd!|2(a)| such blowings-up
(cf. proof of Theorem 1.14 in Sect. 6).

The question then is whether we can reduce to the hypothesis (0.4) by induc-
tion on dimension, replacing (d) in some sense by#” = {(cy,d —q)} on N.
To set up the induction, we would have to consider from the start a collection
7 = {(f,u)} rather than a single paiff (d). (A generalX is, in any case,
defined by several equations; cf. Ch. Ill.) Moreover, the transformation law (0.3)
is not strict transform, so we would have to reformulate the original problem
to not only desingularizé, but also make its “total transform” (its composite
with the sequence of blowings-up) normal crossings (cf. (1.1) ff.). To this end,
suppose that actually represents the strict transform of our original function at
some point in the history of the blowings-up involved, say where the ordar at
first becomed. (We are following the transforms of the function at a sequence
of points “a” over some original point.) Suppose there are= s(a) accumu-
lated exceptional hypersurfaceé, passing througha; say H, N N is defined
on N by an equatiorb,(x) = 0, 1 < p < s. (Eachpua(bp) > 1.) The trans-
formation law for theb, analogous to (0.3) iy = Yobp o 0. Suppose now
that in (0.4) we also havi, ()" = (x?)b;(x), p = 1,...,s (and assume that
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either somec;(a) # 0 or somebj(a) # 0). Then the argument above shows
that (d(a’),s(a’)) < (d(a),s(a)) (with respect to the lexicographic ordering of
pairs), and that if d(a’),s(a’)) = (d(a), s(a)) then 1< [2(@")| < [£2(a)]. (s(&')
counts the exceptional divisok) passing througla.)

The induction on dimension can be realized in various ways. In this arti-
cle, we repeat our construction in increasing codimension to obtain(apw=
(r1(a), s1(a); va(a), ... ) such that(vi(a), s1(a)) = (d(a),s(a)). (We recommend
following the construction of iny on pp. 13-14 in parallel with Example 2.1.)
Shvy (@) = {X : invx(x) = invx(a)} has the form{x € N : pxx? > 1} where
N is a submanifold (of codimensidn say),x = xlQl - -an_”(‘ and each2 #0
only if x is an exceptional divisor. ThuSn, (a) = [JZ where eacly, is the
intersection ofSyy, (@) and all exceptional hypersurfaces containifig This lo-
cal property implies each component of the maximum locus of iisva global
submanifold (Theorem 1.14, Remark 1.15. The invariapfa) of 1.14 corre-
sponds tg{2(a)| above.) Choosing a component of the maximum locus of inv
as each successive centre of blowing up, we get the desingularization theorem
1.6 (and its generalizations in Ch. IV). In the language abd¥eorem. There
is a mappingp: M’ — M realized as a composite of blowings-up with smooth
centres such thap is an isomorphism outside the singularities of X, the strict
transform X is smooth, anddetdy) - (f o ¢) has only normal crossings. (dis
the Jacobian ofp.)

The argument above, with far simpler versions of induction as in [BMS3,
Sect. 4] or [BM4], gives the same conclusion, but witha composite of map-
pings that are either blowings-up with smooth centres or surjections of the form

[TY; — UU;, where the latter is a locally finite open covering of a manifold
i i
and]] means disjoint union.

1. An invariant for desingularization

Main results. Our invariant iny(a) is defined recursively over a sequence of
blowings-up (or local blowings-up as in Sect. 4). detlenote a space (as above)
which is embedded in a manifold (smooth spabg) Consider a sequence of
transformations

— M a1 M — - — M; 5% Moe=M
(1.1) X 41 X X1 Xo =X
Ej+1 Ej E; Eq = 1]

where, for eaclj, oj+1: Mj+1 — M; denotes a blowing-up (or local blowing-
up) with smooth centr&€; C M;, Xj+1 is the strict transform oK by o; (see
Sect. 3) andgj+; denotes the set of exceptional hypersurfacEs.(is the set
of strict transforms of alH € E;, together withajﬁ(cj). When convenient, we
will also useE; to denote the union of the hypersurfadé¢sin E.) If a € M;,
we setE(a) = {H € E; : a € H}. (Throughout the article, by a point we
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mean a closed point (e.g., in the case of schemes). We adopt this convention
for simplicity of exposition. Of course it suffices for the treatment of spaces in
which closed points are dense; for example, schemes of finite type.)

Roughly speaking, the goal of “embedded resolution of singularities” is to
find a finite sequence of blowings-up (1.1) (or a locally finite sequence in the
case of noncompact analytic spaces) such that! HndE’ denote the final strict
transform ofX and the final exceptional set (respectively), and:ifM’ — M
denotes the composite of the sequence of blowings-up, thex' ()smooth; (2)

E’ = 0~(SingX) (o is an isomorphism outsidg’); (3) X’ andE’ simultaneously
have only normal crossings.

SingX means the set of singular points Xf The condition (3) means that
every point ofM’ admits a coordinate neighbourhood in whihis a coordinate
subspace and each hypersurfates E’ is a coordinate hypersurface.

Consider a tower of transformations (1.1). Our invarianti@y, a € M;,

i =0,1,..., will be defined by induction orj, provided that the centre§;,
i <], areadmissible(or invx-admissibl¢ in the sense that:

(1.2) (1)C; andE; simultaneously have only normal crossings;
(2) invx(-) is locally constant orC;.

The condition (1.2) (1) guarantees tHat.,; is a collection of smooth hy-
persurfaces having only normal crossings. The notatiop(ay wherea € M;,
indicates a dependence on the original spdcand not merely or¥;. In fact,
invx(a), a € M;, will be invariant under local isomorphisms &f which pre-
serveE(a) and certain subcollectiorns' (a). (We take theE'(a) to encode the
history of the resolution process, as in “Presentation of the invariant” below in
this section.) We can think of the desingularization algorithm as follotvs: M
determines iny(a), a € M, and thus the first admissible centre of blowing-up
C = Cp; thenink(a), a € My, is defined and determin€}, etc. The exceptional
hypersurfaces serve as “global coordinate subspaces”.

We can allow certain options in the definition of jnvbut at this point we
fix one definition in order to be concrete. infa), a € M;, will be a “word”,

invx(@) = (Hx a,51(2); v2(2), %(a); - .., s(a); 1+(@)) ,
beginning with theHilbert-Samuel function K a; i.e., the function

65(] ,a
f+1 0
ij ,a

Hx a(f) = dimg (e,

where My a denotes the maximal ideal @fx .. (In the case of schemes, we
would replace dira by length or ding, with respect to any embeddirg, —
O /My, WhereT, denotes the residue fietl a/my, , of a.)

Remarks 1.3. i a(¢), for ¢ large enough, coincides with a polynomial drof
degree dimX;. (See Corollary 3.20.)x a(1) — Hx; a(0) = & ,a is the minimal
embedding dimension oj at a. (Thusa € SingX; if and only if ex 2 >



214 E. Bierstone, P.D. Milman
: . e+/

dimaX;.) If a ¢ SingX;, thenHy a(¢) = R for all ¢, wheree = ey 2 =

dimyX;. If X is a hypersurface and dihl; = n, then

n+/¢

n ) L < VXj,au
HXJ}a(E) = n+/¢ n+€—1/><j7a
n - n ) 14 > VXj,au

wherevy; o is theorder of Xj ata. (vx,a = max{y : F a C mg, a)» Where
%; a is the ideal ofX; ata.) In this case, we can therefore replddg , in the
definition of inw (a) by v1(a) = vx a.

The entriess (a) of invy(a) are nonnegative integers reflecting the history
of the accumulating exceptional hypersurfatﬁefs{a) = #Er(a)), and they; (),
r > 2, are “multiplicities” of “higher-order terms” of the equations ¥f at
a; see “Presentation of the invariant” belowa(a), ..., (a) are quotients of
positive integers whose denominators are bounded in terms of the previous part of
invx (a). (More preciselyge _1!vr(a) € N, r =2,...,t, wheree; is the smallest
integerk such thatHy; a(¢) coincides with a polynomial i > k, ande: =
max{e_1!, & _1!11(a)}.) The final entryit41(a) = 0 or oo, andt < n = dimyM;.
(The successive pai|(3/r (a), $(a)) can be defined inductively using functions of
n —r +1 variables, so that < n by exhaustion of variables.) (In [BM3, Sect. 4]
and [BM4, Sect. 3], the notatiord(r) is used for {1, s).)

Example 1.4.Let X C k" denote the hypersurfao€1+xgz+ +x% =0, where
2<di<dh <---<d,t<n.Then

inVX(O) = <dla 330 Tt dtdt170; OO) .

(This is inw (0) at the origin 0 ok" in “year zero”; i.e., before any blowings-up.)

Remark 1.5. To define ink, we need only work with a category# of local-
ringed spaceX = (|X]|, /x) overk such that, for each € |X|: (1) The natural
homomorphism o, — (Xa into the comple‘uon/xa = I|m(x a/m‘;{i is

injective. (2) (The residue field’a := x a/mMy , is included m(x’a) andn =
dimg,my ,/m3 , < co.

If a € |X|, then ink(a) depends only or(Axa More generally, iny(-)
is defined recursively over a sequence of formal local blowings(@pa =

Cxon0— 5 Crgay — - ——Cx o — -, Which are “admissible” ((1.2)). For
eachj, invx(g;) depends only or@j 3 and theE'(a), as above. There is an
ideal %\ of /AXJ a corresponding to a formal “infinitesimal locu§’ = Sy, (&)

of points x € |X| such that in¥(x) = invx(g); § has only normal cross-
ings. If we choose any component §f as the centre ofy’,;, successively for
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j =0,1,..., then we get an admissible sequence of formal local blowings-up
leading to desingularization @fx 5. In order that the algorithm apply 6k ,, we

need to impose conditions on our categow to guarantee tha#g is generated
by an ideal7g C % o, and§ =V (75), whereV (7)) = {x € [Xj[ : f(x) =0,
forallf €.75} (as a germ ah).

To obtain global desingularization, we need to further restriso that iny,
defined over an admissible sequence of blowings-up—X; I, X2
Xo, takes only finitely many maximal values on ea¢h(at least locally), and its
maximum locus coincides in germs at any pantwith Sy, (8 ) as above. See
also (3.9).

The simplest form of our embedded desingularization theorem is the follow-
ing:
Theorem 1.6 (cf. [H1, Main Theorem I]).Suppose thatX| is quasi-compact.
Then there is a finite sequence of blowings-up (1.1) with smoeiradmissible
centers ¢ such that:

(1) For each j, either € C SingX; or X; is smooth and CC X; N E;.

(2) Let X' and E' denote the final strict transform of X and exceptional set,
respectively. Then’Xs smooth and X E’ simultaneously have only normal cross-
ings.

(“Quasi-compact” means every open covering has a finite subcovering; “com-
pact” means “Hausdorff and quasi-compact”.) The conclusion of 1.6 holds, more
generally, forX|U, whereU is any relatively quasi-compact open subsepof
If X is a non-compact analytic space (for example, dvearr C; see also Theo-
rem 13.3), Theorem 1.6 holds with a locally finite sequence of blowings-up. If
is the composite of the sequence of blowingssypthenE’ is the critical locus
of o, andE’ = 0 ~}(SingX).

Remarks 1.7(1) Our proof of Theorem 1.6 requires the hypotheses thatXfor
in our class of spaces, Sixgis closed andHy . is upper-semicontinuous, both
with respect to the Zariski topology 0K | (the topology whose closed sets are
of the form|Y|, for any closed subspacé of X; see Sect. 3.) We give a very
simple proof of semicontinuity oflx . in Chapter Il (Theorem 9.2; cf. [Ben)),
for X in any of the classes of (0.1) (1), (2); in these clasggg,is a coherent
sheaf of rings, and it follows that Singis Zariski-closed (Proposition 10.1).
Both hypotheses above are clear in the hypersurface case, for all classes of (0.1).
(See [GD] for definitions of sheaf-theoretic terms like “coherent”.)

(2) Theorem 1.6 resolves the singularities>¢fin a meaningful geometric
sense provided Reg := |X|\SingX is Zariski-dense ifX|. We will say X is a
geometric spacé RegX is Zariski-dense inX|. For examplereducedcomplex
analytic spaces or schemes of finite type are geometric. Suppdsea geo-
metric space. lb: M’ — M is a blowing-up with smooth centr€, we define
the geometric strict transform X of X by o as the smallest closed subspate
of o71(X) such that|Z| > |e=1(X)|\|e~*(C)|. (The strict and geometric strict
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transforms coincide for reduced schemes or complex analytic spaces.) We can re-
formulate Theorem 1.6 to resolve the singularitieXdfy transformations which
preserve the class of geometric spaces (Sect. 10): “geometric strict transform”
can be used throughout the desingularization algorithm becau¥g,dénotes
the strict transform oK, thenX” C X’ and, ifa’ € X", thenHy» » < Hys o
with equality if and only ifX”" = X’ in germs ata’ (cf. 1.14 below).

(3) In the categories of (0.1) (1) and (2), algebraic techniques make it possible
to use our desingularization algorithm to prove theorems more precise than 1.6;
for example, for spaces that are not necessarily reduced (Sect. 11). Theorem 1.6
does not exclude the possibility of blowing-up “resolved points”; i.e., a centre
of blowing-up C; may include points wher& is smooth and has only normal
crossings with respect t;. (See Example 2.3.) We can modify into avoid
blowing up resolved points; see Sect. 12.

Our desingularization theorems are presented in Chapter IV. (To be brief, we
concentrate in this introduction on an embedded spacer M; see Theorem
13.2 for universal “embedded desingularization” of an abstract spgcé/e give
a constructive definition of invin Chapter Il. (The main idea is presented later
in this introduction.)

Remark 1.8. Transforming an ideal to normal crossirigs [H1, Main Theo-
rem 1l]): Suppose that7 C @y is a sheaf of ideals of finite type. Let(a)
denote theorder vy, of .7 ata € M. (vy 5 = maX{yv : o C My 7a}.) If
o : M’ — M is a local blowing-up with smooth centf@, we can define aveak
transform.7’ C . of .7 by o as follows: For alla’ € M’, .7} is the ideal
generated bygcfoo, f € .7, ), wherev denotes the generic value ef(a) on
C (andyey is a local generator of the ideal of 1(C) at a’). In this context,
our construction can be used to extend;ja¢) = v1(-) to an invariant iny(-)
which is defined inductively over a sequence of transformations

— M a+ M — - — M 5% Moe=M
(1.9) B Ej E: Eo=0
Fa1 1 T Jo=T

where theoj,; are local blowings-up whose centres are jradmissible(cf.
(1.2)), B+ is the set of exceptional hypersurfaces, and e&Gh is the weak
transform of.7. (See 1.18.) Using iny, our algorithm gives the following the-
orem (which is a consequence of Theorem 1.6 in the caseZhat.% is the
ideal sheaf of a hypersurfacé).

Theorem 1.10. Suppose thdM | is quasi-compact. Then there is a finite sequence
(1.9) of blowings-up;, j = 1,...,k, with smoottinv >-admissible centres, such
that. % = &y, and o NT7) =0"(7)- i, 1S @ normal-crossings divisor, where

o . M¢ — M denotes the composite of tlag. (“Normal-crossings divisor”
means a principal ideal of finite type, generated locally by a monomial in suitable
coordinates.)
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It follows that if 7, C %, denotes the ideal generated by the Jacobian
determinant oy, then 7, - 0=1(.7) is a normal-crossings divisor.

Remark 1.11. In year zerahere is a straightforward geometric definition
of invx: Assume thatX is a hypersurface. (The following construction will
be extended to the general case in Remark 3.25, using the “diagram of ini-
tial exponents”.) Locally X is defined by a single equationh = 0. Consider
the Taylor expansior (x) = > . fox® of f at a pointa, for a given co-
ordinate system x= (Xi,...,%). (Sayx(@) = 0. If a € N", then x> de-
notes the monomiak;™ ---x3". IV denotes the nonnegative integers.) We as-
sociate to the Taylor expansion &f at a its Newton diagramor support
Q@) = {a € N" : f, # 0}. Let us order the hyperpland$ in R" lexico-
graphically with respect tad = (d,,...,d,), where thed; are the intersections
of H with the coordinate axes, listed so ttit < d, < --- < d, < oc0. We
regardQ(a) as a subset of the positive orthant®@f, and letd(x) = (dy, .. ., dn)
denote the maximum order of a hyperpladewhich lies under Q(a) (in the
sense that for eacluf, ..., an) € 9Q(a), there existsf, ..., By) € H such that

G < «j for eachi); in particular, 0< d; < co. Of coursed(x) depends on the
coordinate syster = (Xg,...,%y). Setd = SUpcoordinaed(X), d = (dy, ..., dn).

systemsx
Then

: L de

Ian(O) <d1,0, dl,O, ) dt_170’ OO) s
whered; is the last finited; . It is natural to ask whethet = supd(x) is realized by
a particular coordinate systexn(In Example 1.4 above, the supremum is realized
by the given coordinates.) The construction we use to define imChapter I
(or below in this section) gives a positive answer. Moreover, beginning with any
coordinate system, we find an explicit change of variables to obtain coordinates
X = (X, ...,%) in which d(x) = d; in these coordinates, the centre of the first
blowing-up in our resolution algorithm ig = - - - = % = 0 (where the coordinates
are indexed so that corresponds ta;, for eachi). Consider another coordinate
systemy = (yi,...,Y¥n) in which the supremund is realized (indexed again so
thatd; corresponds tg;, for eachi). Write y = ¢(x), ¢ = (¢1, ..., ¢n), for the
coordinate transformation. Then, using = d;/d; as weights for thes andy;,
i =1,...,n (cf. Remark 3.25), the weighted initial forms bfwith respect to
x andy are obtained one from the other by the substitujon ¢,,(x), where
eachy; = ¢, ;(x) is the weighted homogeneous part of orderin the Taylor
expansion ofy; = ¢;(x). (This remark will not be used here; we plan to pursue
it elsewhere.)

1.12. A combinatorial analogue of resolution of singularities (cf. toroidal
desingularization). Let .# be a finite simplicial complex. We define the
blowing-upox of .Z2 along a simplexX' as the smallest simplicial subdivi-
sion.#' of .74 which includes the barycentre df. If V (.#2) denotes the set
of vertices (0-simplices]Hy,...,Hq} of .Z, thenV (.2') = {H,... , Hi,1},
whereH, = Hy, k < d, andHy,, is the barycentre of. If D is a functionD:
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V(#) — 7, we define the transfor®’ of D by oy asD’": V(.#') — Z,
where D'(H/) = D(Hk), k < d, andD’(Hg,1) = > D(Hk). If D1,D2:
HeVv(X)
V (A) — 7., we say thaD; < D, if D3(Hk) < D»(Hy) for all k. Theorem. Sup-
pose Q: V(.Z) — Z,j = 1,...,s. Then there is a finite sequence of simplicial
blowings-up of 72 after which the transforms Dof the O are locally totally
ordered as follows: Let#' denote the final transform of#4. Then, for every
simplexX' of _#Z, there is a permutatioffj,, . ..,js) of the indices j such that
Dy, IV (£) < D,IV(X) < - < DLV(5),

A finite simplicial complex can be associated to a system of smooth hyper-
surfaces with only normal crossings in a smooth ambient spacé/ Lt a man-
ifold and letE denote a finite collection of smooth hypersurfades, ..., Hq}
in M having only normal crossings. We associateEtdhe simplicial complex
26 = _/¢(E) whose vertices correspond to tHg and whose simplice&’ corre-
spond to nonempty intersectiohig, M- - - N Hy,. Every finite simplicial complex
can be realized in this way. Say that a blowingatpM’ — M is admissibleif
its centreC is an intersection of hypersurfaceskni.e.,C = C(X) corresponds
to a simplexX' of .. The system of hypersurfac&s transforms undet to
E’ ={H{,...,H{,1}, whereH, denotes the strict transform &fy, k < d, and
Hg. = o Y(C). It is easy to see thaw#' = .//(E’) is the simplicial blowing-

d
up ox of .Z. A formal divisorD = " n¢[Hy] (where eachny € Z) on M
k=1
corresponds to the functiob(Hy) = ng on V(.#2). The {otal) transform of
d
D =Y n[Hi] by o is defined aD’ = > n[H/1+ (> n[H,4]. Clearly,
k=1 Hyev (X
this is the same as the combinatorial transformatikon (ru)le above. The preceding
theorem is equivalent to the following “combinatorial desingularization theo-

rem”. (Compare to the role played by Lemma 4.7 in [BM3, Sect. 4]. See also
Lemma 12.8.)

Theorem 1.13. Let M be a manifold and E= {H1,...,Hq} a finite collection

of smooth hypersurfaces in M having only normal crossings. Suppose we have
a system of formal divisors;B= > nix[Hk] (where eachp € Z),j = 1,...,s.

Then there is a finite sequence of admissible blowings-up of M after which the
transforms D) of the O are locally totally ordered in the following sense: Let
M’ E’ denote the final transforms of NE. Then, for each ‘ac M’, there is

a permutation(js, . . ., js) of the indices j such that]-gH) < Dj’z(H) <. <
Dj,(H)forallH € E' witha' € H.

Proof. It is enough to consides = 2. Our proof is a simple parallel of the
construction in Chapter Il (and Theorem 1.14). lete M. Setiy(a) =

min{ >_ Di(H), >_ D2(H)} — > min{D1(H),D2(H)}, and inv@) := v1(a).

H>a H>a H>a
(“sy(a)” is unneeded; £»(a)” = 0.) Put

pa(8) = max{ 3" Di(H), > Da(H)} — 3 min{Ds(H), Do(H)} .

H>a H>a H>a
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Let S, denote (the germ &t of) {x € M : 141(X) = v1(a)}. Then the irreducible

componentsZ of S, are of the formzZ =z := (| H for certainl C E (as
Hel
germs ata) (andZ = S, N () H; cf. Theorem 1.14 (3)): To be explicit, say
HoZ

that (@) = > (D1(H) — Do(H)), whereDo(H) := min{D1(H), Do(H)}. Set
H>a

J(@)={H :H >aandDx(H) > Do(H)}, k =1,2. Then eaclZ = Z,, where
I = Ji(@a)uUJ andJ is a subset ofl,(a) that is minimal with respect to the
property thatz (DZ(H) — DO(H)) > v1(a). (In particular, if ux(a) = v1(a),

thenS, = 7, wherel =Ji(a) U Jx(a).)

Now let; be the maximum value of the invariant i@j(a € M, and letS :=

{x € M : v1(x) = 1n}. Then the irreducible components Sfare thez, above,

forall a € S. Write uy(l) := rglzn u2(@); thenpuo(l) = max{ > (D1(H) —Do(H)),
acs Hel

> (D2(H) — Do(H))} > 1. Let o be the blowing-up with centre one of these
Hel

componentsz,. We claim that(v1(b); z2(b)) < (v1(o(b)); p2(a(b))), for all
b € 071(Z) (so the theorem follows by induction). Indeed, by the minimality
property above] = J; U J, whereJ := {H € | : Dy(H) > Do(H)}, k =
1,2. Say thaty, = Z (Dl(H) — D()(H )) Leta e 7. If vy < ,u,z(l), then

Hel
J1 = Ji(a); if v1 = up(l), then we can assume the same is true by interchanging

k = 1 and 2 if necessary. In any case,<0 > (D(H) — Do(H)) — 11 <
Hel

D,(H,) — Do(H.) for everyH, € J,. Letb € H, := 071(Z) anda = o(b).
ThenD;(H)) := Z Di(H) < Z D2(H) =: D2(Hi); henceDo(H,) = Di(H),

and Do(H,) — Do(H.) < Dy(H. )— Do(H.) for everyH, € J,. If H € E, let

H’ be the strict transform oH. SinceD;(H,) — Do(H;) = 0, it follows that

1r(b) < mi(a) and vi(b) = v1(a) if and only if b € () H’ and p(b) =
Hed;

> (D2(H) — Do(H)) > > (D1(H) — Do(H)) = va(b) (in particular,b ¢ H/,
Hsb H5b

for someH, € Jp). But yx(@) = Y- (D2(H) — Do(H)) sincer; = 14(a) and
H>a

J; = J1(a). Therefore,v1(b) = v1(a) implies thatus(b) < po(a) — (DZ(H*) —

Do(H.)) + (D2(Hi) — Do(H)) < pz(a). (Sinceri(b) < pa(b), it follows that

n(b) < (@) if pa(a) =11(a).) O

Fundamental properties of inv. Let X denote a closed subspace of a smooth
spaceM, as before. Our desingularization theorems will follow from four key
properties satisfied by iry for any admissible sequence of blowings-up (Theo-
rem 1.14).

A function 7: [M| — X, where X' is a partially-ordered set, will be called
Zariski-semicontinuougf 7 locally takes only finitely many values and, for all
o€ X, S ={x e |M|: 7(x) > o} is Zariski-closed. (See Lemma 3.10,
Definition 3.11.)
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The function7(-) = Hyx . takes values in the s&t" of functions fromN
to itself. NV is partially ordered as follows: IH;,H, € NV, thenH; < H, if
Hi(¢) < Hy(¢) for all ¢, andHi(¢) < Hy(¢) for somel. We can then use the
lexicographic ordering of words like igga) to obtain a partially-ordered set in
which inv(-) takes values.

Theorem 1.14. Consider anyinvx-admissible sequence of local blowings-up
(1.1). The following properties hold.

(1) Semicontinuity (i) For each j, every point ofM; | admits a neighbourhood
U such thatinvk takes only finitely many values in U and, for allaU, {x €
U : invx(x) < invx(a)} is Zariski-open in}M,— |U | (i) invyk is “infinitesimally
upper-semicontinuous” in the sense thiagy (a) < invy (O'j (a)) for all a € M;,
j>1

(2) StabilizationGiven g € M; suchthat a=0j+1(g+1),j =0,1,2,..., there
exists § such thatinvy (g ) = invx(a-+1) when j> jo. (In fact, any nonincreasing
seguence in the value setiofx stabilizes.)

(3) Letae M; and let &(a) denote the germ at a (with respect to the Zariski
topology) of Sv,(a) (SO thatinvx(-) = invx(a) on &(a)). Then §(a) and E(a)
simultaneously have only normal crossings (i.e., there are local coordinates in
which each is a union of coordinate subspaceshug(a) = (... ; c0), then &(a)
is smooth. linvx(a) = (...;0)and Z denotes an irreducible component g,
then

Z =@ N ({HecE@:ZcH}.

(4) Letaec M;. If invx(a) = (...;00) and ¢ is the local blowing-up of M
with centre §(a), theninvy(a’) < invx(a) for all a’ € o—1(a). Otherwise, there
is an additional invariantux(a) > 1 such that, if Z is an irreducible component
of S(a) and o is the local blowing-up with centre Z, theinvx (a'), ux(a')) <
(invx(a), ux(a)) foralla’ € o~*(a). (a!ux(a) € I¥, with @ as defined following
1.3)

Theorem 1.14 will be proved in Chapter Il in the case thaés a hypersurface,
and completed in Chapter Ill in the general case. Condition (1) (i) impliesigv
Zariski-semicontinuous ifX| is quasi-compact or iX is an analytic space over
a locally compact fieldk (Remark 6.14). Note that, because of the bounds on
the denominators of the termg(a) in invx(a), the stabilization property (2) of
Theorem 1.14 is an immediate consequence of the corresponding property of the
Hilbert-Samuel function. An elementary proof of stability of the Hilbert-Samuel
function can be found in [BM4, Theorem 5.2.1]. The present article is self-
contained except for this result and some elementary properties of the diagram
of initial exponents, for which we give references in Sect. 3.

Remark 1.15.Leta € M; andU = {x € [M;| : invx(x) < invx(a)}. Then each
irreducible component o8 (a) extends to a smooth (Zariski-) closed subset of
U. This is a consequence of 1.14 (3):dfe M;, we label every componeizt

of Sx(a) asz, wherel = {H € E(a) : Z C H}. Consider any total ordering
on the collection of all subsets of E;. For eacha € M;, putJ(a) = max{| :



Canonical desingularization in characteristic zero 221

Z, is a component o (a)}; set ing(a) = (invx(a);J(a)). Clearly, ing ()
satisfies 1.14 (1)(i) and its maximum locuslhis smooth.

Of course, givera € M; and any componer#; of S¢(a), we can choose the
ordering above so thdt=J(a) = maxJ : J C E;}, therefore,Z; extends to a
smooth Zariski-closed subset of.

Remark 1.16. The preceding construction shows that,i(@) can be extended
to an invariant in§(a) = (invx(a); J(a)) which has the property that, for &,
S¢(a) is smooth (wher&g(a) is the germ oiSm,;(a) ata): It suffices to order the

subsets of each; as follows: WriteEj = {H],....H/}, whereH/ is the strict
transform ofH) ' by oj,i =1,...,j — 1, andH/ =6, (Cj_1) (i.e., eactH! is
the strict transform ofri_l(Ci_l) by the sequence of blowings-up.1, ..., ;).

Associate to each C Ej the sequenced(;, ..., &), whered = 0 if H! ¢ 1 and
6 =1if HiJ € |, and use the lexicographic ordering of such sequences, fpr all
andl C E;. (See Remark 6.17.)

Universal and canonical desingularization.The extended invariant ifivand
Theorem 1.14 give a desingularization algorithm with uniquely determined cen-
tres of blowing up: When our spaces are quasi-compact (e.g., schemes or compact
analytic spaces) we get a tower of jradmissible blowings-up (1.1) by succes-
sively choosing as each smooth closed ce@jrethe locus of (the finitely many)
maximal values of in§ on SingX;. (If a € SingX;, thenSc(a) C SingX; be-
cause the Hilbert-Samuel function distinguishes between smooth and singular
points.) By property 1.14 (4)(invx(a’), ux(@’)) < (invx(a), ux(a)) for all
aecC anda’ aj‘&(a). Theorem 1.6 follows. (See Sect. 10.) A theorem for
analytic spaceX which are not necessarily compact follows from the algorithm
applied to relatively compact open subsetsxofSect. 13).

Our desingularization algorithm isniversalfor Noetherian spaces: To every
X, we associate a morphism of resolution of singularitigs X’ — X such that
any local isomorphisnX |U — Y |V lifts to an isomorphismX’ | oy }(U) —
Y’ | oy}(V) (in fact, lifts to isomorphisms throughout the entire towers of
blowings-up). U,V denote Zariski-open subsets |of|, |Y|, respectively.) See
Sect. 13.

For analytic spaces which are not necessarily compact, the resulting procedure
is canonical GivenX, there is a morphism of desingularizatieg: X’ — X such
that any isomorphisnX|U — X|V (over subsetd), V of |X| which are open
in the Hausdorff topology) lifts to an isomorphiskt | oy 1(U) — X' | o (V).
(See Sect. 13))

Presentation of the invariant. We outline here the construction of igthat is
detailed in Chapter II. (It might help to read this subsection in parallel with the ex-
amples of Sect. 2.) The entriega), 1»(a), s;(a), . . . of invx(a) will themselves

be defined recursively. Let us write infor invy truncated aftes. (with the con-
vention that iny(a) = invx(a) if r > t). We also write iny+%(a) = (inVy; vr+1),

so that iny,(a) meansHy, ... For eachr, the entriess;, v+ Of invx can be
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defined inductively over a tower of (local) blowings-up (1.1) whose cerixes
are t — ;)-admissiblein the sense that:

(1.17)(1)C; andE; simultaneously have only normal crossings;
(2) invr_% is locally constant orC;.

Once in\(+% is defined,r > 0, s+ can be introduced immediately, in

an invariant way: Consider a tower of local blowings-up (1.1) with+(§)—
admissible centres. Writej = gj+10---00j,1 =0,...,j —1, and7 = id.
Supposea € M;. We seta; = mj(a). First considerr = 0. Leti de-
note the smallest indek such that iny,,(a) = invy»(ax) and setEa) =
{H € E(@) : H is the strict transform of some hypersurfaceb(a)}. We de-
fine s;(a) = #E(a). In general, suppose thatis the smallest indek such that
invr+%(a) = invr+%(ak). LetE™(a) = {H € E(a)\ Ug<r E4(@): H is the strict
transform of some element &(a;)}. We defines .1(a) = #E"*1(a).
We will introduce each/.1(a) by an explicit construction in local coordi-

nates. Let us consider data of the following type at a (closed) poitM:

N =N(a): a germ ata of a regular submanifold d¥1 of codimensiorp;

T4 (@) = {(h, un)}: a finite collection of pairsh, un), where eacth € 4 4
and eachun € Q is an “assigned multiplicity’un < pa(h). (ua(h) is the order
of h ata);

& (a): a collection of smooth hypersurfaces > a such thatN and & '(a)
simultaneously have only normal crossings, &dd H, for all H € £ (a).

We will call (N(a),.7(a), & (a)) aninfinitesimal presentatigrand we define
its equimultiple locus Sz as{x € N : ux(h) > pun, for all (h, un) € .F7(a)}.
S C N is well-defined as a germ at Given an infinitesimal presentation
(N(a),-7#(a), #(a)), we also define a transforfN (a’),. 7 (a’), & (a')) by a
morphism of each of 3 types: (§dmissible blowing-up(ii) projection from the
product with a line (iii) exceptional blowing-upSee (4.3). For example, a local
blowing-upo: M’ — M with smooth centreC is admissible ifC C Sy and
C and #(a) simultaneously have only normal crossings. In this caseNlet
denote the strict transform &f by o, and leta’ € 0—*(a) such thaa’ € N’ and
par(N”) > pn, for all (h, un) € .7#(a), whereh’ = yeit"h o o (provided sucha’
exists). Yexc denotes a local generator of the idealoof'(C).) We setN(a’) =
germ of N’ ata’, .7#(@’) = {(n’, un)}, and £ (@) = {oc~X(C)}U{H' : H ¢
#(a), a’ € H'} (whereH’ = the strict transform oH).

Transformations of types (ii) and (iii) will be needed only to prove the invari-
ance ofy,.1(a) using certain sequences of test blowings-up. Of cougéhoo
above is defined only up to an invertible factor, but two different choices are
equivalent in the sense of the following definition: Givé&t{a), we will say that
two infinitesimal presentation$N,.7 (a), £ (a)) and (P,.7(a), ¢ (a)) (per-
haps of different codimension) aeguivalent(with respect to transformations of
types (i), (ii) and (iii)) if:

(1) S7@) = Swq)-
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(2) If o is a local blowing-up as in (i) an@’ € o~'(a), thena’ € N’
and i (Yexe f 0 o) >y, for all (f,uc) € .7 (a), if and only if a’ € P’ and
pra (Yexe "N 0 o) > pn, for all (h, un) € .77 (a).

(3) After a transformation of type (i), (i) or (iii),(N’,.7 (a’), £ (&')) is
equivalent to(P’,.7(a’), & (&')). (This makes sense recursively.)

For example, assume thal(a),.7#(a), < (a)) is an infinitesimal presen-
tation, .72 (a) = {(h,un)}. Then: (1) There is an equivalent presentation with
un € N, independent oh: simply replace eacth( i) by (h®/#n e), for suitable
e. (2) Suppose there i$(un) € .77(a) with pa(h) = un andh = ITh™ . If we
replace §, un) in .7Z(a) by the collection of i, ), €achun, = pa(hi), then
we obtain an equivalent presentation.

We will prove that

. palh)
T e @ pn

is an invariant of the equivalence class of the infinitesimal presentéﬂbia),
F¥(a), & (a)) (in fact, with respect to transformations of types (i), (ii) alone).

Our construction starts with a local invariant that admits a presentation; we
consider here the Hilbert-Samuel functiétx . of our spaceX ¢ M (but see
also 1.8, 1.18): We first introduce the transfokh of X by a morphismo of
type (i), (i), (iii): X’ is the strict transform oK in the case of (i), and the
total transformo—%(X) in the case of (ii) or (iii). An infinitesimal presentation
N = (N(a), .7 (a), #(a)) with codimN = p will be called a ¢odimension p
presentation of Ig . at a (with respect to% (a)) if:

(1) Sz = SH(a), whereS; (a) denotes the germ atof {x : Hx x = Hxa}.

(2) After an admissible local blowing-up ((i) above),Hx: o = Hx 5 if and
only if 2’ € N’ and uy (h’) > up for all (h, up) € .72(a)).

(3) Conditions (1) and (2) continue to hold after any sequence of transfor-
mations of types (i), (ii) and (iii).

In particular, after any sequence of transformations (i), (i), (iii), the transform
(N(@"), .7 (@’), #(@)) is a (codimensiorp) presentation oHy . at a’, with
respect to (a’). Of course, any two presentationslaf . at a with respect to
#(a) are equivalent. It is clear that the equivalence class of a presentation of
Hx . ata with respect to'(a) depends only on the local isomorphism class of
M, X, & (a).

Consider, for example, a hypersurfaxeC M. Let inv; ,(a) = v1(a) be the
ordervx 5 of X at a pointa. Suppose thag(x) = 0 is a local equation oK at
a (i.e., g generates’ ). Let N(a) = germ ofM ata, % (a) = {(g,d)}, where
d = vi(a), and £ (a) = 0. Then (N(a), < (a) = “i(a), # (a)) is a codimension
zero presentation af; ata. We definer, (and the successivg.;) by induction
on codimension; the key point is that we can chabsey , such thaju,(z) = 1
and (N (a), ¢ (a), #'(a)) is equivalent toN (a), & (a)u{(z, 1)}, & (a)). It follows
that, after any sequence of transformations of types (i), (ii) and fii)z’) = 1,
Ss@) C {Z/ =0} and N(a'), ¥ (a’), #(a’)) is equivalent to Nl(a'), ‘v'(a’) U
{(/,1)}, #(a")) (Proposition 4.12).
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To construct the elemerz above: Let Xi,...,%,) be a local coordinate
system forM ata (cf. Sect. 3). (By a linear coordinate change) we can assume
(0%g/0x9)(a) # 0. Takez = 99-1g/0x9~1; z = 0 defines a (germ of) a regular
submanifoldN; = N;(a) of M of codimension 1. If£1(a) denotes the collection

q
of pairs 1, un) = (gxg ‘Nl, d —q), g=0,...,d—2 (eachh makes sense as an
n

element of’%, ), then(Ny(a), Z1(a), # (a) = 0) is a codimension 1 presentation
of 11 ata (cf. 4.18).

Now consider a sequence (1.1) wi;hadmissible centre§;. Leta € M;.
Leti be the smallest such that(a) = v1(ax); in particular,E(a) = E'(a). Let
(N(&), “(a), ¢ (&) = 0) be a codimension zero presentation.efat a;, and
let (N(a), “1(a), ¢ (a)) be its transform at (by the sequence of blowings-up
oi+1,---,07). Then (a) = E(@)\El(a) (= #1(a), say), andN (a), “i(a), 1(a))
is a codimension zero presentation:af at a with respect to#;(a). For each
H € El(a), letty € “n; 2 gENErate’; o, and let.7(a) denote%;(a) together
with all pairs €,uf) = (¢u,1), H € EXa). Then N(a),.7(a), #1(a)) is a
codimension zero presentation of inw (11, s1) at a.

As above, choose € %y, 5 such thatu, (z) =1 and N(a), ‘%1(a), “1(a))
is equivalent toll (&), ‘“1(a) U{(z, 1)}, #i(&)). If 2’ is the transform of ata,
then N (a), ‘“1(a), #1(a)) is equivalent to Nl (a), ““1(a) U {(Z/, 1)}, #1(a)), and
therefore N(a), 71(a), #1(a)) is equivalent to l (a),.71(a) U {(z’, 1)}, #1(a)).
Suppose thatxg,...,x,) is a local coordinate system fdv; at a such that
(02’ /0xn)(@) # 0. LetN; = N;(a) denote the (germ & of a) regular subman-

q
ifold {z’ = 0}, and.7%;(a) the collection of pairsh| un) = (gxg [Ny, s — q),
0 <qg < u, for all (f,us) € Z(a). Then Nl(a),.761(a),é§ir&a)) is a codi-
mension 1 presentation of ipvat a. (Likewise, if #1(a) denotes the collec-
q

tion of pairs (gxgml,ug — q), 0 < q < pg forall (g,uy) € *a(a), then
(N1(a), #1(a), #1(a)) is a codimension 1 presentation mf at a.)

Suppose tha(Nl(a),yKl(a), P,?;”l(a)) is any codimension 1 presentation of
invy ata, with respect to#1(a) = E(a)\E*(a). Let up(a) = Moz (ay- If p2(@) = oo,
we set ink(a) = (invi(a); oo). Otherwise, for alH € #(a), we write

i (8) = min{”“/fh(h): (. ) e-%l(a)} ,

wherepuy a(h) denotes therder of h along HON; at a (i.e., the order to which
a generatoky of the local ideal ofH N N; factors fromh); we definev,(a) as

va(8) 1= ia(@) = > paw (@) -
H

Thenv,(a) > 0. We will prove that eacl, (a) and thus,(a) is an invariant of
the equivalence class cﬁNl(a),.%”l(a), Pﬂ(a)) (with respect to transformations
(1), (i) and (iii), but with a certain restriction on the sequence allowed; see 4.10);
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hence eachu,y(a) andv,(a) are invariants of the local isomorphism class of
M, X, E(a), E*@&).

LetD(@) = [ x4 @ D(a) = D,(a); eachh € .7%(a) can be factored

He#(a

ash =D#h . g, andl;ia)(g) > pg, Wherep, = pp - 12(a). (Rational exponents and
orders can be avoided by raising to suitable powers.)4%€a) be the collection
of pairs{(g, 114)} together with(D,1 — 1»(a)) if 1»(a) < 1. (“%(a) := {(D, 1)}
in the case that,(a) = 0.) Then (Ni(a), %(a), #1(a)) is a codimension 1
presentation of iqg at a with respect to;(a) = E(a)\E'(a). If v»(a) = 0, set
invy(a) = invl%(a).

Suppose that & 1»(a) < oo. Clearly, js, = 1. Now assume that theg .,
in (1.1) are g—admissible. Set(a) = “1(a)\E?(a). Then(Nl(a), %(a), %z(a))
is a codimension 1 presentation of '1rgvata with respect to%,(a) and, as above,
there is an equivalent codimension 2 presenta@ku(a), “3(a), Zg(a)), ....The
construction can be repeated in increasing codimension. Eventually we reach
t < n = dimyM; such that 0< 11(a) < oo if r < t, andr+1(a) = 0 or oco.
Then we define iny(a) = (invi(a); n+1(2)) and ux(a) = u+1(a). See Chapter
[I. Our presentations satisfy a natural property of “semicoherence” (6.4) which
allows us to prove that invis Zariski-semicontinuous using the (elementary)
Zariski-semicontinuity of order of a regular function. In Chapter I, we thus
prove Theorem 1.14 in the case of a hypersurface.

Remark 1.18.In the context of Remark 1.8, we can obtain a codimension zero
presentationN (a), < (a), & (a) = 0)) of v1 = v ata (with respect to the notion

of weak transform) simply by takinijl(a) = the germ ofM ata, and < (a) =
{(g9,1(a))}, where{g} is any finite set of generators of,. The construction
above allows us to define ip\(-) and thus to prove the analogue of Theorem
1.14, and Theorem 1.10.

Presentation of the Hilbert-Samuel function.In higher codimension, we can
define inyk exactly as in the case of a hypersurface, provided we find a (semi-
coherent) presentation of the Hilbert-Samuel function. This is the subject of
Chapter Ill. The standard basis @}a C @a (with respect to any identifica-
tion @a > K[[ X1, ..., Xn]]) provides aformal presentation oHy . ata. The
Henselian division theorem of Hironaka [H3] gives a presentation (at least with
respect to admissible blowings-up (i); cf. [H3, Sect. 7, Theorem 1], [BM4, The-
orem 7.3]) that is algebraic in the sense of Artin, and hence involves passing to
an étale covering ofX. We use an elementary division algorithm to get a pre-
sentation by regular functions. We also g'ﬁiq;(’a ={xe|X|: Hxx >Hxa}a
natural structure of a closesibspaceof X (cf. [Gi]), and prove equality of the
ideals definingSy, , and the equimultiple locus of a regular presentation.

Remark 1.19.The standard basis c?;,a itself extends to a presentation of the
Hilbert-Samuel function which is regular in a weaker sense that nevertheless

suffices to prove desingularization using Chapter II: {E§ C é;a denote the
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standard basis (with respect to a generic coordinate system). Then all formal
derivatives 9l*/F /0X*, o € N", when restricted tcS, ,, are (induced by)
regular functions defined in a common neighbourhabdf a. Moreover, the
induced formal expansions at eagte Sy, , N U provide a formal presentation
atb. (This was our original approach and seems of independent interest; we plan
to publish details elsewhere.)

2. Examples and an application

In the examples below, we will follow the desingularization algorithm (over a
sequence of local blowings-up of a hypersurface) as sketched in “Presentation
of the invariant” in Sect. 1 and detailed in Chapter Il. We will use the notation
from Sect. 1.

Example 2.1. Consider the hypersurfacé = V(g) c k® defined byg(x) =
X2 — x2x3.

Year zerolLet a = 0. Thenvy(a) = pa(g) = 2 andE(@) = 0, sosi(a) = 0. A
codimension zero presentation of iny= 11 ata (with respect to1(a) = 0) is
given by (N(a), “i(a), #1(a) = 0), whereN(a) = k* and %i(a) = {(g,2)} =
Zi(a). We can takeNj(a) = {x = 0} and.7%(a) = {(x?x3,2)} to get a
codimension 1 presentatioh{(a), .71(a), #1(a)) of invy = (v1,s) ata. Thus,
va(a) = p2(a) = 5/2 and inyy(a) = (2,0;5/2). Let %(a) = {(x#x3,5)}; then
(N1(a), “%(a), #1(a)) is a codimension 1 presentation of 1rgvata. The latter is
equivalent to Ny (a), {(x1, 1), (X2, 1)}, #1(a) = 0), so repeating the construction,
we find inu(a) = (2,0;5/2,0;1,0;.00) and Snwy () = S, ; (@) = {2} (S (3)

is the germ ofS;,, a) ata, etc.) We thus let; : My — Mg = k® be the blowing-
up with centreCy = {a}. M, is covered by coordinate chatty = M1\ {x = 0},
where {x = 0} is the strict transform ofx = 0}, i = 1,2, 3; 01|U; can be
written x; = y1, X2 = Y1Y2, X3 = Y1y3 (cf. “Blowing up” in Sect. 3).

Year onelet X; denote the strict transform of by o1; thenX;NU; =V (g1),
where g1 = y;%goor = y2 — yiyS. Let b = 0 in Uy, Thenwy(b) = 2 = 14(a);
therefore,EX(b) = ), si(b) = 0, and #1(b) := E(b)\EX(b) = E(b) = {Hy},
whereH; = o7%@) = {y1 = 0}. We can takeZ(b) = “(b) = {(g1,2)},
Ni(b) = {yz = 0} = Ny(@)’, and .7 (b) = {(V}y3,2)}. (Of courseydys =
y1 2(x2x§)o01).) Thenyuz(b) = 3 anduan, (b) = 3/2, so thatx(b) = 3—-3/2 = 3/2
and inys(b) = (2,0;3/2). Da(b) = y2/2 5o that %(b) = {(y3,3)}, which is
equivalent to{(yz,1)}. (Ni(b), %(b), #1(b)) is a presentation of iq\é at b;
therefore,anvll(b) = {y» = y3 = 0}. Repeating the procedur&?(b) = {H;},

inva(b) = (2,0;23/2, 1) and iny is presented ab by (Ni(b),.Z(b), #»(b) = 0),
where . 7(b) = {(y1,1),(y2,1)}. Finally, inw(b) = (2,0;3/2,1;1 0;00) and
Sy (0) = Snv,(0) = {y1 = 2 = y3 = 0} = {b}. We let o, be the
blowing-up with centreC; = {b}. 0, *(Us) is covered by 3 coordinate charts
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Uz = o, (U)\{y =0}, i =12 3; 02/Us, can be writteny; = 212, y» = 2,
Y3 = 2p23.

Year two.Let X, denote the strict transform of;; in particular,X; N Uy, =
V(g2), Where g, = z,%gro0p = 2§ — 2323, Let ¢ = 0 in Usp. Now, E(c) =
{H]_7 Hz}, whereH; = {y]_ = O}/ = {Z]_ = 0} andH, = (T (b) = {Zz = 0} Then
11(c) = 2 = vy(a), so thatEl(c) = 0, si(c) = 0, and 5(1(0) = E(c). We take
Zi(c) = “4(c) = {(g2,2)}, Ni(c) = {zz = 0}, and.Zi(c) = {(z’z},2)}. Then
112(c) = 7/2 andD,(c) = 2?22, so thatu,(c) = 0 and ink(c) = inv;1(c) =
(2,0;0). Ni(c),.7#(c), #1(c)) is a presentation of inv(or of inv, ;) atc, and
(N1(c), %(c), #1(c)), where %(c) = {(D2(c), 1)}, is a presentation of inv=
invl% atc. Snvy (C) = Snvll (c) is the union of thez,- andz;-axes;Spy, (C) NH1 =

2-axis andSpy, (c) N H; - z-axis. In the lexicographic ordering of the set of
subsets ofE(c) (given by 1.16),{H;:} = (1,0) > (0,1) = {H,}, so thatJ(c)

= {H;} and in&(c) = (invx(c); {H1}). In other words, although (for property
1.14(4)) we could choose either componenSgj, (c) as centre of blowing-up,
for the purpose of canonical desingularization we choBse= z-axis. Letos

be the blowing-up with centr€,. a;l(Ulz) is covered by 2 coordinate charts
U1z, WhereUqy = agl(Ulz)\{zi =0}, i =1,3; 03]U121 can be writterg; = wy,

Zy = Wy, Z3 = W1W3.

Year three.Let X3 be the strict transform o0Kj; in particular, Xz N Upp; =
V (g3), Wheregs = w2 —wywj. Letd = 0in Ugpy, so thatE(d) = {H2, Hs}, where
Hz = {z = O} = {wp = 0} andHz = 03 (Cp) = {w1 = 0}. Thenu(d) = 2,
so thatE'(d) = ), si(d) = 0, and #;(d) = E(d). We takeN;(d) = {ws = 0}
(still the strict transform oNy(a) = {xs = 0}) and.7#(d) = {(wiw3,2)}. Then
pi2(d) = 5/2 andD,(d) = wi/?w3, so thatu,(d) = 0 and in(d) = v, (d) =
(2,0;0). Again, (N1(d),.71(d), #1(d)) is a presentation of inv(or of invy ;)
atd, and (Nl(d) Z(d), #1(d)), where %5(d) = {(D2(d), 1)} is a presentation
of invx = |nv11 atd. Therefore,Sny, (d) = Sny 1(d) = {wy = ws = 0}. We let
o4 be the blowing-up with centr€; = w;- aX|s Note that iny(d) = invx(c),
but ux(d) = pa(d) = 5/2 < 7/2 = uy(c) = px(c) (as predicted by Theorem
1.14 (4)).0;1(U121) is covered by 2 coordinate chart$,;, where Uy =
o3 (U)\{wi = 0V, i = 2,3; 04|U1212 can be writtenw; = vy, wp = vy,
w3 = V2U3.

Year four.Let X4 be the strict transform ofs; thusXsNU1212=V (g4), Where
ga =v3 —v1v2. Lete = 0 in Uppy, SO thatE(e) = {Hz, Hs}, whereHs = {w; =
0} = {v1 = 0} andH, = 0, 1(C3) = {v2 = 0}. Thenwi(e) = 2, so thatE'(e) = 0,
si(e) = 0, #1(e) = E(e). As above, we getix(e) = 3/2 andDx(e) = vi/ V2, SO
that inw(e) = (2,0;0). ink is presented ae by (Ni(e), “2(€), Z1(€)), where
Ni(e) = {vs = 0} and %(e) = {(D2(€), 1) }. Therefore Sny, (€) = {v2 = v3 = 0}.
It is easy to see that, if we blow up with cen@g = Sy, (€), then the multiplicity
of the strict transform decreases; in fact, the strict transf&ns non-singular.
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Example 2.2.ConsiderX = {x2—x;x2 = 0} — the hypersurface in year four above
— but without a history of blowings-up; i.eE(-) = . Leta = 0. In this case,
invlé(a) = (2,0;3/2) (cf. year zero above), and we can ta¥ga) = {x; = 0},
Ft@) = {(ax2,2)} and H@) = {(xx,3)}; (Ni(a), %(a), “i(a) = 0)

is a codimension 1 presentation of '1rgvat a, and we get an equivalent
presentation by replacingzz(a) with {(x1, 1), (X2, 1)}. Therefore, iny(a) =
(2,0;3/2,0;1,0;00) (as in year zero above) As centre of blowing up we would
chooseC = Sy, (a) = {a} — not thex;-axis as in year four of 2.1, although the
singularity is the same!

Example 2.3.Consider the hypersurfage=V (g) C k3, whereg(x) = X3 — X1 X

Year zero.Let a = 0. Thenwvy(a) = pa(g) = 2 and Singk = {a}, so that
Snvy (@) = {@}. We therefore letr; : My — Mg = k® be the blowing-up with
centreCy = {a}. My is covered by 3 coordinate chatts = M;\{x = 0}, where
{x = 0} is the strict transform ofx = O}, i = 1,2,3; 01|Us can be written
X1 = Y1Y3, X2 = Y2¥3, X3 = Y¥s3.

Year onelLet X; denote the strict transform & by o1; thenX;NU3 =V (¢1),
whereg; = ya_zgocrl =y3—V1Yo. Letb =0 in Uz. Thenu(b) =1 < 2 =14(a);
thereforeE*(b) = E(b) = {H:}, whereH; = o, %(a) = {y3 = 0}, so thats(b) =
1 and #3(b) = 0. We can takeZi(b) = {(g1, 1), (y3, 1)}, Ni(b) = {yz = 0}
and .7%1(b) = {(y1y2,1)}. Then ua(b) = 2 = w,(b), invlé(b) = (1,1;2) and
F(b) = %(b) = {y1y2, 2)}, which is equivalent to{(y1, 1), (Y2, 1)}. It follows
that inw (b) = (1,1;2 0; 1,0;00) and Spy, (b) = S'nvll(b) = {b}. Let o, be the

2

blowing-up with centreC; = {b}. o, }(Us) is covered by 3 coordinate charts
U3i = U;l(Ug)\{yi = O}/, = 1, 2,3; O’2|U31 can be Writteny1 =2, Y2 = 42,
Y3 = 2173.

Year two.Let X, be the strict transform ofy; in particular,X;NUz; = V (g2),
where g, = z; 'g1002 = 23 — z12. Let ¢ = 0 in Uy Thenw(c) = 1 = vy(b),
and E(c) = {H1,Hz}, whereH; = {y3 = 0} = {zz = 0} andH, = 0, '(b) =
{z; = 0}, so thatE'(c) = {H;}, si(c) = 1 and #;(c) = {H,}. We take.74(c) =
{(gz,l), (23,1)}, Ni(c) = {Zg = 0} and .,qgl(C) = {(2122, 1)} Then ,U,z(C) =2
andD,(c) = z;, sov,(c) = 1 and in\{%(c) = (1,1;1). HenceE?(c) = {H,} and

(N1(c), %(c), #2(c)), where %(c) = {(z,1)} and #(c) = 0, is a presentation
of invlé atc. It follows that inw(c) = (1,1;1,1; 1,0; 00) andSpy, (C) = {c}. Let

o3 be the blowing-up with centr€, = {c}. 051(U31) is covered by 3 coordinate
chartsUszq = 03‘1(U31)\{z; =0}, i =1,2,3; 03/Us11 can be writtenz; = wy,
Zp = wWiWy, 73 = W1W3.

Year three.Let X3 be the strict transform oKj; in particular, Xz N Uz =
V(gg), Wheregg = w3 — wiwy. Let d=0in Us11, SO thatE(d) = {Hj_, Hg},
whereH; = {ws = 0} andHz = o5%(c) = {w; = 0}. Thenwy(d) = 1, EX(d) =
{H1}, s1(d) = 1 and #;1(d) = {H3}. We take.71(d) = {(g3, 1), (w3, 1)}, N1(d) =
{ws = 0} and.Z1(d) = {(wiwy, 1)}. Thenpuy(d) = 2 andDy(d) = w;y, so that
vp(d) = 1 and in\i%(d) = (1,1;1). HenceE?(d) = 0, invo(d) = (1,1;1,0) and
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(N1(d), 7(d), #5(d)), where. 7(d) = 5(d) = {(w2, 1)} and &5(d) = {Hs}, is a
presentation of invat d. It follows that inw (d) = (1,1; 1, 0;00) and Spy, (d) =
{wsz = 0,w, = 0}. In this chartUsz;;, X3 is smooth and has only normal crossings
with respect to the collectiofe; of all exceptional divisors at every point of
{ws = wy = 0} exceptd = 0 (cf. 1.7(3)).

An application: L ojasiewicz’s inequalities. The fundamental inequalities of

L ojasiewicz are immediate consequences of desingularization in the form of
Theorem 1.10 (or 1.6 in the hypersurface case); in fact, we need only the fol-
lowing:

Theorem 2.4.Let M be a manifold, and le¥ C %, denote a sheaf of (principal)
ideals of finite type. Then there is a manifold &hd a proper surjective morphism
¢ : M’ — M such thatp=1(.7) is a normal-crossings divisor.

Theorem 2.5. Inequality I. Assume k=R or C. Letf andg be regular functions
on a manifold M. (Recall that “regular” means “analytic” in the category of
analytic spaces.) Suppose that K is a compact subset of M andxhag(x) =
0} c {x : f(x) = 0} in a neighbourhood of K. Then there exist\c;> 0 such that
lg(x)| > c|f(x)|* in a neighbourhood of K. The infimum of sukhs a positive
rational.

Proof. This is obvious iff (x) - g(x) has only normal crossings in a heighbourhood
of K; in general, therefore, it follows from Theorem 2.4. O

Remark 2.6.We are assuming here that the category of spaces is from (0.2) (2)
or (3). (If M has a quasi-compact underlying algebraic structure with respect to
which f and g are regular, therk can be chosen independentkf there is an
analogous remark concerning Inequalities 1l and III following.) The argument
above allows us to conclude that, in any of the categories of (0.2), locally some
power of fop belongs to the ideal generated byyp; it follows that locally f
belongs to the integral closure of the ideal generated,bgnd the equation of
integral dependence has degree bounde dof. [LT]).

Theorem 2.7. Inequality Il. Let f be a regular function on an open subspace
M of R". Suppose that K is a compact subset of M, on whiettf (x) = 0 only

if f (x) = 0. Then there exist ¢ 0 and i, 0 < p < 1, such that|gradf (x)| >

c|f (x)|*~* in a neighbourhood of K .Qupu is rational.)

Proof. If f(a) = 0, then there is a neighbourhood &fin which grad (x) = 0
only if f(x) = 0. Let g(x) = |grad (x)|? = /L, (0f /9%)?. (As for Inequality

) let ¢ : M/ — M be a morphism given by 2.4 for the ideal generated by
f - g. We claim there is a neighbourhood @f }(K) in which ¢*(f2/g) is a
regular function vanishing ofix : (fop)(x) = 0}: Consider a curvey : x = x(t)

in M such thaty N {x : f(x) = 0} = {x(0)} and~ is the image of a smooth
curve inM’ transverse tg~* ({x : g(x) = 0}) at a smooth point of the latter. Let
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Q(t) =f (x(t)). ThenQ(t) # O fort # 0, soQ(t) has nonzero Taylor expansion at
t = 0. ThereforeQ(t) is divisible by Q’(t) = df (dx/dt) andQ(t)/Q’(t) vanishes
att = 0. Since|Q’(t)[> < g(x(t))|dx/dt|?, it follows thatQ(t)? is divisible by
g(x(t)) andf (x(t))z/g(x(t)) vanishes at = 0. The claim follows.

From the claim, we conclude (as in 2.5) that there @re > 0 (where
sup is rational) such thaif (x)|?* > c?f (x)?/g(x) in a neighbourhood oK.
Clearly, 0< p <1 (1 = 1 if and only if g(x) vanishes nowhere oK.) Thus,
|grad (x)| > c[f (). O

Theorem 2.8. Inequality Ill. Let f be a regular function on an open subspace
M of R", and set Z= {x € M : f(x) = 0}. Suppose K is a compact subset of M.
Then there are ¢~ 0 andv > 1 such thatf (x)| > cd(x, Z)" in a neighbourhood
of K. (d(-, Z2) is the distance to Z.) The infimum of sucls rational.

Proof. This follows from Inequality II: We can assume that graéd = 0 only if
f(x) = 0, onK. We then claim that (even if is merely ! and) if |grad (x)| >
c[f(x)|*~* in a neighbourhoodJ of K, where 0< u < 1, then|f(x)[* >
ped(x, Z) in some neighbourhood df (cf. L ojasiewicz {L]): Consider a point
a € U such thatf (a) # 0. We can assume th&ta) > 0. (Otherwise, use-f.)
Suppose that(t) is a solution of the equaticaix/dt = —grad (x)/|grad (x)| with
x(0) = a. Write Q(t) = f (x(t)). ThenQ’(t) = df (dx/dt) = —|grad (x(t))| < O.
Hence

f@" _ QO —Q)» _ 1 /'d_ ..,
p 7 __M/o g QU
ot t
=,/ Qt)*tQ/(t)dt zc/ dt=ct.
0 0

It follows that the solution curvex = Xx(t) tends toZ in a finite timety. Since
|[dx/dt| = 1,1ty > d(a,Z) andf (a)* > ucd(a, Z), as required. O

3. Basic notions

Definitions and notation. Let X = (|X|, ¢%) denote a local-ringed space ouer
We call |X| the supportor underlying topological spacef X. X is smoothif,
for all x € |X|, Cx x is a regular local ring. A local-ringed spate= (|Y|, )
is a closed subspacef X if there is a sheaf of idealst of finite type in
such thatlY | = suppx /. % and % is the restriction tdY| of % /. %. Y is an
open subspacef X if |Y| is an open subset K| and % = % |(|Y].

LetX = (|X|, @) be a local-ringed space. Late |X|. Suppose thdt € 7 4
(or thatf € % (U), whereU is an open neighbourhood af we usually do not
distinguish betweefi € % 5, and a representative in a suitable neighbourhood
U). We define theorder u,(f) of f at a as the largesgp € N such thaf € m§’<,a
(wheremx7a denotes the maximal ideal @fx a). (1af) = oo if f =0in % a.)
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Let C be a closed subspace ¥f, so thatC is defined by a sheaf of ideals
T C Cx of finite type. We define therder uc o(f) of f along C at aas the
largestp € IV such thatf € .72,

Let o: X — Y be a morphism of local-ringed spaces. Thusai€ |X|, ¢
induces local homomorphismg}: % ,@) — Cx.a (@and @y: —@,w(a) — /AXa
for the completions). Iy € % @) (Or g € % (V), whereV is an open neigh-
bourhood ofp(a)), then we will denotep}(g) also byg o pa or even byg o ¢.
(Similarly for &7.

An elementf € x(U), whereU C |X] is open, will be called aegular
function (on U). We will write X, (respectively,f;) for the germ ata of X
(respectively, of ). If U is open in|X| andfy, ... ,f, € & (U), thenV (f,...,f)
will denote the subspace ¥f|U defined by the ideal subsheaf® |U generated
by thef;.

Regular coordinate charts.If M is an analytic manifold, then a classical coor-
dinate charU is regular in the sense of (0.2). (Hefe(U) = & (U) means the
ring of analytic functions o .)

In this subsection, we show how to construct regular coordinate charts in the
algebraic context. Consider a scheme of finite type dueket X = (|X|, )
denote either the scheme itself, or the local-ringed space whkeres the set
of k-rational points of the scheme, with the induced Zariski topology, @xd
is the restriction to|X| of the structure sheaf of the scheme. We will show
that if X = M is smooth, therM can be covered by coordinate charts as in
(0.2). In the remainder of the article, we will adopt the convention that the
residue field isk at every point (and writ&k" rather thanA™) in order to use
a language common to schemes, analytic spaces, etc. But it will be clear from
the construction of coordinate charts here (more precisely, from the fact that
Taylor expansion commutes with differentiation and composition), that all of our
constructions apply to points that are not necess&rihational. (See Remark
3.8)

LetM = (M|, @n). Each pointa of M admits a Zariski-open neighbourhood
U in which regular functions (elements 6f(U) = 44 (U)) can be described as
follows:

(31) )U = V(P...,Pn=n), WhereN > n = dim;M and thep; €
k[u, v] are polynomials iny, v) = (U, ..., Un,v1, ..., un—n) Such that debp/dv
vanishes nowhere dd (i.e., is invertible in the local ring ofN at every point of
U). (Op/0v denotes the Jacobian matédXpy, ..., pPn—n)/d(v1, ..., on_n).) We
thus have a closed embeddibg— AN. (We say that the projectiomu(v) — u
of AN onto A" induces an étale coveringU — A".)

(2) Each element of”(U) is the restriction toU of a rational function
f =q/r, whereq,r € k[u,v] andr vanishes nowhere od .

If M is a schemelU = Sped[u,v]/I, wherel = (p1,...,pn—n) IS the
ideal generated by thp;, and @?(U) can be identified wittk[u,v]/l (by the
Nullstellensatz).



232 E. Bierstone, P.D. Milman

Definition 3.2. A (regular) coordinate system(xy,...,X,) on a Zariski-open
subset U ofM | means an n-tuple of elements ?(U) satisfying the following
condition: Let a€ U. Letg =x(a) € Fa, i = 1,...,n, wherelF, denotes the
residue field%;/m,. (m, is the maximal ideal o7 = Cu a.) If §i(2) € K[Z]
denotes the minimal polynomial gf @.e., the minimal monic relation for; avith
coefficients in k, i =1,...,n, then thed; (x;) form a basis of np/m2 overF,.

In this case, dind?, = dim.pama/mg. If Fo =k (i.e., if a is ak-rational poing
then®;(x) = X — &. In general,®(x) ~ % — & in the localizationFa[x](s)-
(We use~ to mean “= except for an invertible factor”.)

In (3.1) above, the restrictiong to U of the uy; form a regular coordinate
system Xq,...,%,). (The values of the coordinates may coincide at different
points ofU.)

Lemma 3.3. Letac M and let x, .. ., X, denote regular functions on a neigh-
bourhood of a. Then there is a Zariski-open neighbourhood U of a such that
(X1,...,%y) is a regular coordinate system on U if and only if there is a closed
embedding U— AN for some N, as in (3.1), and the are the restrictions of
they to U.

Proof. Let U be a Zariski-open neighbourhood afsuch that) admits a closed
embeddingy — AN satisfying (3.1), and eack € @ (U); thus eachx is the
restriction toU of a functiong; (u, v)/ri(u, v), whereq;, ri € k[u,v] andr;(u, v)
vanishes nowhere od. Clearly, &, ..., X,) forms a regular coordinate system
onU if and only if the gradients of the; /r; and thep; are linearly independent
at every point ofU. Consider

U — A"™ (y,u,v)

N I
AN y

wherey = (y1,...,yn) and U is embedded inA"™N asU = V (ri(u,v)yi—
i (U, v), pj (u,v)). Since eachx; is the restriction ofy; to U, (X1,...,X,) are
regular coordinates if and only if détriy; — o, pj)/0(u,v) is a unit in@'(U);
the lemma follows. O

We will call a Zariski-open subset) of M| which satisfies the condi-
tions of Lemma 3.3 &regular) coordinate chartwith (regular) coordinates
X = (X1, --5%n)-

Definition 3.4. Taylor homomorphism.Let U be a regular coordinate chart in
M, with coordinategxy, . . ., Xy). For each ac U, there is an injective lalgebra
homomorphism I % a — Fal[X]], X = (Xq, ..., Xy), that can be described as
follows. Let p= (py,.-..,Pn_n) (in the notation of (3.1)). By the formal implicit
function theorem, fu(a) + X, v(@)+V) = U(X,V)(V — (X)), whereyp(X) €
Fa[[XIN ", ©(0) = 0, and U(X, V) is an invertible(N — n) x (N — n) matrix
with entries inFa[[X,V]]. Let f € @y a. Then f is induced by an elementd
k[u, v] @, and (Taf)(X) = F (u(a) + X, v(a) + ¢(X)).
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The Taylor homomorphismTinduces an isomorphisiiy a — Fa[[X]]. Let
D“: Fa[[X]] — Fa[[X]] denote the formal derivative!®! /oX* =
gortren [GX ML XM, o = (aq, . . ., an) € WM.

Lemma 3.5. Let U be a regular coordinate chart in M, with coordinates=x
(X1, ..., %). Leta e N". If f € @(U), then there is (a unique),fe ?(U) such
that, forallac U,

D(Taf)(X) = (Tafa)(X) .

(We will write f, = 9!/ /0x*.) More precisely, ifo = (j) for some j (j) is the
multiindex withl in the j'th place and0 elsewhere; i.e., D = 9/0X%;) and if f is
induced by F=q/r, where (u, v), r(u,v) € k[u, v] (notation of (3.1)), theng
is induced by

a(Fv Py, .., pN—n) /deta(plv SERE) pN—n)

Fiy = det .
® AU, v1, - onn)/ O, ., UN_n)

Proof. It suffices to consider the case that = 1; i.e.,« = (j), for somej. Let
a € U; say (u(@),v(a)) = (0,0). From {Taf )(X) = F (X, ¢(X)) (as in Definition
3.4) and fromp (X, (X)) = 0, we obtain

OTaf _ OF oF K
_ op Ip Oy

Thus, dTaf /0% = Fg)(X, (X)), where

Op\OF  OF [ Op\¢ O
. (detaS)a: - ai‘(as) 'az
’ de ;1) |

(A* means the matrix such that- A* = detA - |.) The numerator here is the
expression required in the lemma. O

Remark 3.6.In Chapters Il and Il below{x : invx(x) > invx(a)} is construc-
tively defined near any poird by combinations of derivatives of the original
equations. It follows from Lemma 3.5 that this set and therefore the centre of
our blowing-up are defined over the ground fig&ldeven ifa is notk-rational).

Remark 3.7. Let a € U. Suppose thax(a) = 0,i = 1,...,n. (We use the
notation above.) If € @'(U) andd € N, then the Taylor expansiom{f )(X)
with respect to the regular coordinate systems (g, ..., X,) can be written in
a unique fashion as

(Taf)(X) = Co(X) +Ca(X)Xn + -+ Cg1 (X)X + g (X)X
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whereX = (X1, ..., Xn_1). Of courseX = (xq, ..., %,_1) forms a regular coordi-
nate system oMN =V (x,) and, for eaclq = 0,...,d — 1, cq(X) is the Taylor

expansion at of the regular function ofN given by the restriction ofq L oxd"

Since the Taylor homomorphism is injective, we will write
f(x) = Co(X) +- - +ca 1 (XX~ +ca()%]

for the Taylor expansion above, and we will identify eag(x), when convenient,

. . 109 .
with the element of? , induced byql gxt‘ (In the case of analytic spaces, the
. n

preceding expression is just the usual convergent expansion with respgck to

Remark 3.8. All of the arguments in the paper involvir\eg’}?\‘“,1 apply as they
are written at an irrational poird provided that in the identification(% a
K[[X]]", the field k is understood to be not the ground field but rather the residue
field . If o is @ morphism and-(a’) = a, thenlF, C [F, but they need not be
equal. Nevertheless, the homomorphism of completignsa[[X]] — Fa [ Y]]
induced byo},: “m.a — Cur o and the Taylor series homomorphisms in local
coordinates, factors as

~ %

TallX]] < Fo [[X]]~25 T [1Y]] -

In this context, k" should be understood aB,/. (For example, in the proofs

of Theorem 7.20 and 7.21 in the case of irrational points. Also in this way, the
proof of Proposition 3.13 can be read as is in the caselthat [,/ ; for the
general case, see Remark 3.23.)

Properties of the category of spaces.et .2 denote any of the (algebraic or
analytic) categories of local-ringed spaces dvdisted in (0.1) (1) and (2). Then
.4 has the following essential features:

(3.9) (1) LetX € . 2. If Y is an open or a closed subspaceothenY € . 2.
Locally, X is a closed subspace of a manifditl € . 4, where:

(2) A manifold M = (|M |, %) is a smooth space such tht| has a neigh-
bourhood basis given by (the supports of) regular coordinate charts as in (0.2).
(It follows that if X is a smooth subspace of a manifditl thenX is a manifold
and is locally a coordinate subspace of a coordinate chamfoin particular,
every smooth spack is a manifold and is, therefore, locally pure-dimensional.)

(3) Let X € .-4. Then % is a coherent sheaf of rings al is locally
Noetherianin the sense of the following subsection.

(4) .4 is closed under blowing-up. (It follows that M < .2 is smooth,
then a blowing-upr: M’ — M with smooth centreC ¢ M can be described
locally as a quadratic transformation in regular coordinate charts.)

We recall thatc? is a coherent sheaf of rings if and only if every ideal of

finite type in is coherent. “Blowing-up” in (4) can be understood in terms of
the universal mapping definition of Grothendieck (cf. [H1, Ch. 0, Sect. 2]). We
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do not need this definition (and therefore do not recall it); it follows from (3)
above that ifX is a closed subspace of a manifdWi, then a blowing-up oX

is given by thestrict transformof X by a blowing-up ofM. (See “Blowing up”
and “The strict transform” below.)

The Zariski topology. Let .4 denote a category of local-ringed spaces dver
(e.g., as in (0.1)). LeK = (|X|,) € . 4. A subsetS of |X| will be called

a Zariski-closed subsedf |X| (or of X) if S is the support of a closed sub-
space ofX (in .-2). SupposeS and T are Zariski-closed subsets oX|; say
S = supp /.7 andT = supp%/ Z, where.7, Z C (% are ideals of finite
type that define closed subspaces i ThenSNT = supp /(7 + Z) and
SUT =supp /.7 - Z are Zariski-closed. AZariski-open subsedf |X| (or of
X) is the complement of a Zariski-closed subset. The Zariski-open subsets of
define theZariski topology In general, the (original) topology dK| might be
bigger than the Zariski topology (e.g., in the case of analytic spaces).

We say thaK is Noetherianif every decreasing sequence of closed subspaces
of X (in. ) stabilizes. We say th&X | is Noetherianif every decreasing sequence
of Zariski-closed subsets stabilizesXlfis Noetherian, thefX| is Noetherian. We
say thatx (respectively|X|) is locally Noetheriarif every point of|X| admits an
open neighbourhood (whereU is the support of an open subspace#) such
that every decreasing sequence of closed subspacéqrafspectively, Zariski-
closed subsets dK|) stabilizes onJ. Clearly, if X (respectively|X|) is locally
Noetherian andX | is quasi-compact, theX (respectively|X|) is Noetherian. (A
real- or complex-analytic spacéis Noetherian if and only ifX| is compact.) If
X is locally Noetherian, then the intersection of any family of closed subspaces
of X is a subspace; hence the intersection of any family of Zariski-closed subsets
of |X| is Zariski-closed.

Lemma 3.10. SupposégX]| is Noetherian. Let” be a partially ordered set in
which every decreasing sequence stabilizessLéX| — Y. Then the following
are equivalent:

(1) 7 is upper-semicontinuous in the Zariski topology; i.e., each & | admits
a Zariski-open neighbourhood U such thgk) < r(a) forall x € U.

(2) T takes only finitely many values and, forale ¥, S, := {x € |X]: 7(X) >
o} is Zariski-closed.

Proof. Assume (1). Letr € ¥. SetW = |[X|\S,. If a € W, thena has a
Zariski-open neighbourhood, in which 7(x) < 7(a) (so thatr(x) #? o); in
particular,U, € W. ThusW = | J,., Ua. Since|X| is NoetherianW is the
union of finitely manyU,, so thatW is Zariski-open, as required. It follows
from the hypothesis ort’ that v takes only finitely many values. Conversely,
assume (2). Lea € |X|. SetU = {x € |X]: 7(x) < 7(a)}. ThenU is the
complement of the finite unio), ., ) S-- O

Definition 3.11. Let X' denote a partially-ordered set. A functian |X| — X' is
Zariski- semicontinuousif: (1) Locally, T takes only finitely many values (locally
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with respect to open subspaces of X.if). (2) Forallo € X, {x € |X]: 7(x) >
o} is Zariski-closed.

The Hilbert-Samuel functiokly . and therefore our invariant igwake values
in partially-ordered sets satisfying the hypothesis of Lemma 3.10 (by [BM4,
Theorem 5.2.1]; cf. Theorem 1.14). Our definition of jnin Sect. 6 shows
that, when the given topology dX| differs from the Zariski topology, inv is
semicontinuous in a sense that aspfiori) weaker than 3.11: (In the notation of
Theorem 1.14), every point ¢i; | has a coordinate neighbourhobdsuch that,
foralla e U, Va:={x € U : invx(x) < invx(a)} is Zariski-open in|M; U |. If
IM; | is locally Noetherian (or iX is a hypersurface), then, as in 3.10, there is a
covering by coordinate chartd in which inw takes only finitely many values
and (for any value), {x € U : invx(x) > .} is Zariski-closed inM;|U |.

Of course, ifS C |X] and |X]| is covered by open subset$ such that
eachS N U is the support of a smooth subspaceXdtJ, thenS is globally
the support of a smooth subspaceXof As a consequence, the centres of the
blowings-up prescribed by our desingularization algorithm are always smooth
spacesMoreover, in the case of analytic spaces (for example), it follows from
invariance of iny with respect to finite extension of the base figldhat inw
is actually Zariski-semicontinuous in the stronger sense.

Blowing-up. Let .4 be a category of local-ringed spaces okems in (3.9).
LetM = (M|, %) be a smooth space in4, andC a smooth subspace ™.
Then C is covered by regular coordinate chatis of M, each of which has
coordinatex = (w, z), w = (w1, ..., wn—), Z = (z1,...,%), inwhichC NnU =
V(@) =V(=z,...,z).

Leto: M/ =BIcM — M be the blowing-up oM with centreC. Let U be
a regular coordinate chart as above, andJét o—1(U). ThenU’ = {(a,¢) €
UxP—1: z(@) € ¢}, where' 1 is the ¢ — 1)-dimensional projective space
of lines ¢ through 0 ink" (or A"); if we write ¢ € P~ as¢ = [&,...,&]in
homogeneous coordinates, then

U' = {@&eUxPt:z@4=z@)¢4 1<i,j<r}.

r
Therefore,U’ = |J U/, where, for each, U/ = {(a,£§) e U’ : & =1}.
i=1
It follows that, for each, U/ is a regular coordinate chart with coordinates

X'=w,z), w = (wy,...,wh_), 2 = (z,...,2/) given byw'(a, ) = w(a),
Z'(a,§) = z(a), andz/(a,§) = z(a)/z(a) if j #i. In particular, suppose that
f € %\ a, wherea € U andw(a) = 0, z(a) = 0; if &’ € o~1(a) N U/, then the
Taylor expansion of oo ata’ is given by formal substitution ab = w’, z =z
andz =7 (z/(a')+Z),j #i, in the Taylor expansion df ata.

Example 3.12.Let M = (|]M|, %) be a smooth scheme of finite type ouer
and letU be a regular coordinate chart with coordinates (xy,...,%,) as in
(3.1). As before, suppose that= (w, z) such thatC NU =V (z). ConsiderU/,
say fori = 1. (Using the notation of (3.1)) we have a commutative diagram
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UJ{ N AN+(r—l)
N !
An
whereU/ is embedded imN*C— asV (p1,...,pn_n, G = Un_r+ — Un_r+1§,
i =2,...,r) (in the affine coordinatesu(v,&,,...,&) of AN*(=1) and the
projection is given by @, ...,Un—r,Un_r+1,&2,...,&). U — k" is an étale
covering since
0 . 0
(p7CI2> uql‘) = det p

det
6(’07 Un—r+2, .-, Un) v

The strict transform. We use the notation of the preceding subsection.d:et
M’ — M be a blowing-up with smooth cent@ c M, and letH = c—1(C). Let
X be a closed subspace M. First suppose thaX is ahypersurfacei.e., % is
principal. Leta € M and letf € .% , be a generator of% ,. If a’ € o~1(a),
then we define%. o as the principal ideal il o» generated by’ = yg,3f oo,
whereyey denotes a generator o o andd = uc a(f). (Thusd is the largest
power ofyexc to whichf oo is divisible in %y ,/.) In this way we get a coherent
sheaf of principal ideals% in %,/; the strict transform X of X by means
the corresponding closed subspacevit

In local coordinates as above, suppose thé) = 0, z(a) = 0, and let
a’ € U]. Thenyex = z{ and (the Taylor expansion at of) f’ is given by

', 2) = @)% (v, 4, 24E (@) +2)) ,

whereZ' = (z,...,2/). We will also callf’ the “strict transform” off by o,
althoughf’ is, of course, only defined up to multiplication by an invertible
factor.

The strict transform byo of an arbitrary closed subspaée of M can be
defined as the closed subspateof M’ such that, locally at eacd’ € M’, X’
is the intersection of the strict transforms of all hypersurfaces contaXingar
a=o(a’); i.e., % o C Oy o is the ideal generated by the strict transforifis
ofall f € % a.

Proposition 3.13 (cf. [H1]). Let & € M’. Then%. . is the ideal{f € /4 :
yE S € Tp—1x).ar» TOr some ke N}. (7, -1y, o is generated by, (% s (a))-)

We will give a simple proof of Proposition 3.13 below, as an application of
the diagram of initial exponents. By Proposition 3.1&/ = > [ 7,1 : y&d,
so that. % is an ideal of finite type (sinc¥ is locally Noetherian).

Remark 3.14. (In a category satisfying the conditions (3.9)), we define the
reduced space & corresponding toX using the coherent sheaf of ideals
Fea = VFx. It is easy to see that iK' is the strict transform oX by a
blowing-up, as above, theiX{()reqd = (Kred)’-

Remark 3.15.Let X" denote the smallest closed subspace of(X) containing
o Y(X)\H, whereH = ¢~1(C). (X" exists by local Noetherianness.) Of course,
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X" c X', In the case of schemes or analytic spaces over an algebraically closed
field, X" = X’. (A consequence of Hilbert's Nullstellensatz.) Bt # X’ in
general.

Example 3.16Let X ¢ M = R? denote the real analytic subspadéx—1)>+y? =
0. Leto: M’ — M be the blowing-up with centré0}. Then the strict transform
X" c U’, whereU’ ¢ M’ is a chart in whicho is given byx = u, y = uw.
In U’, X" is defined byu?(u — 1) + v = 0, so that|X’| = {(0,0), (1,0)}, but
X" ={(1,0)}.

The diagram of initial exponents. The material in this subsection is needed
only in Chapters Ill and IV (but we will also use the diagram to give a simple
proof of Proposition 3.13 and to extend Remark 1.11 to the general case).
LetK be afield andk[[X]] = K[[ X4, ..., Xn]]. If @ =(a1,...,an) € N", put
|a] = ag+- -+ an. The lexicographic ordering oh(*+ 1)-tuples («|, as, . .., an)
induces a total ordering ofi". Let F = . FoX* € K[[X]], where
X® = X[t Xon, Let supgF = {a : F, # 0}. Theinitial exponentexp F
is the smallest element of supp If a = expF, thenF, x* is called theinitial
monomialmonF of F.
The following theorem of Hironaka [H1] (cf. [BM1, Theorem 6.2]) is a
simple generalization of Euclidean division. L&t,...,GS € K[[X]], and let
o =expG',i =1,...,s. We associate ta,...,a° a decomposition ofi":
i—1 s
SetA = (@ +N)— U 4;,i =1,...,s, and putly = N" — |J 4;. We also
j=1 i=1
defined; C N" by A =o' +0;,i =1,...,s.

Theorem 3.17.For each F € K[[X]], there are unique Q< K[[X]].i =1,...,s,
and Re K[[X]] such thatsuppQ; C O;, suppR C Oo, and F= Zle QG +R.

Remark 3.18.Let m denote the maximal ideal d€[[X]]. In Theorem 3.17, if

k € I andF € mK, thenR € m* and eachQ, € mk—lo'l (wherem’ means
K[[X]] if €< 0).

Let| be an ideal inK[[X]]. The diagram of initial exponents1(l) c N" is
defined as1(l) = {expF : F € I }. Clearlym(1) + N" = 9i(1). Let Z(n) =
{MCN": MN+N" =91}, If 91 € Z(n), then there is a smallest finite subsgt
of 9 such thathl = Y+ N"; U = {a € 9 : M{a} € Z(n)}. We call Y the
verticesof 91.

Corollary 3.19. Leta',i = 1,...,s, denote the vertices 8f(1 ). Choose G € |
such thate' = expG', i = 1,...,s (we say that Grepresentsy'), and let
{4Ai,Op} denote the decomposition ©f' determined by the', as above. Then:
(1) (1) = 4; and the G generate .
(2) There is a unique set of generator$ &f I, i = 1,...,s, such that, for
each i,suppE’ — x) c Og; in particular, monF' = x*' .
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We call F2, ..., FS the standard basiof | (with respect to the given total
ordering ofi"). If 91 € Z(n), let K[[X]]™ = {F € K[[X]] : suppF NN =
0; i.e., supgF C Oo}. Clearly, K[[X]]™ is stable with respect to formal differ-
entiation

Now let H, denote the Hilbert-Samuel function &f[[X]]/I; i.e., H (k) =
dimg K[[X]] /(I + mk*1), k € N. By Remark 3.18 and Corollary 3.19, we have:

Corollary 3.20. For every ke N, H (k) =#{«a e N": a ¢ 9(1) and|a| < k}.
It follows that H (k) coincides with a polynomial in k, for k large enough.

Remark 3.21.The preceding definitions make sense and the results abzeeft
for 3.18 and 3.20) hold, for any total ordering &f' which is compatible with
addition in the sense that: For any3,v € N", v >0, anda < = a+vy <
B+7.

In order to prove Proposition 3.13, we will use the total orderingi'diven
by the lexicographic ordering oby, |a|, ay, ..., an), « € N". We then have:

Lemma 3.22. Let | be an ideal inK[[Y]] = K[[Y1,..., Ya]]l, and let J denote
the ideal J = {G(Y) € K[[Y]] : Y{G(Y) € I, for some ke N}. Suppose
that F(Y) € I,i = 1,...,s, represent the vertices 6f(l); for each i, write
Fi(Y) = Ylki Gi(Y), where G(Y) is not divisible by Y. Then J is generated by the
Gi.

Proof. This is an immediate consequence of the following variant of Remark
3.18 which holds for the given ordering df": In the formal division algorithm
3.17, if F € (Yo)X, thenR € (Y)¥ and eachQ; € (Y1)*%. ((Y1) denotes the
ideal generated by;.) O

Proof of Proposition 3.13We can choose coordinatesaat o(a’) anda’ so that
Ona = KXy, .. Xl Owrar = KI[Ya, ..., Yoll @nd G250 Gy a — Owr o has
the formX, =Y,, £=1,...,q (whereq > 1), X, = Yi(n, +Y,), £=q+1, ..., n.
(See Remarks 3.8, 3.23.) Put -Z—l(x)ﬁ/ c k[[YlandJ ={G(Y) e K[[Y]] :
YFG(Y) €I, for somek € N}. Suppose thatj(X),j = 1,...,r, generateiﬁ.
We can find polynomial®; (Y) € k[Y], i =1,...,s,j =1,...,r, such that the

Fi(Y) = D Pi(Y)H oo)(Y) €l
j
represent the vertices 0f(1). EachF;(Y) is the pullback by of
Xq+1 Xn 1
Pi (X4, ... gt s o = JHI(X) = g i (XH; (X)
JZ (XX T e ) OO Xf,jZQ.J( )Hi(X)
for someq; € N, where theQ; € k[X]. Write Gi(X) = >_; Qj (X)H;(X), for

eachi. Thus each=(Y) = (Y0) 59 (Gj o o)(Y). Write (Gj c o)(Y) = Ylm G/(Y),
whereG/ is not divisible byYi, so thatm > q. ThenFi(Y) = Y," "% G/(Y),
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for eachi, where eaclts; € .i/,a/. But theG/ generatel, by 3.22. (This formal
argument suffices to prove the proposition because, for any igeal Gy o,

17 n é?i/l’,a’ = /A') O
Remark 3.23.The proof above in the cade, ; IF,» should be understood with
the following modification: We can find polynomialk; < ﬂmﬁa{x;ql’ e ig; ,

i=1...,sj=1....r, such that the5 (Y) := > (55 P;i)(Y) - (Hj o 0) € |
represent the vertices of(l). (This follows from Lemma 3.24 below, applied

with R = iy ,a[x;gl,--,)x(ﬂ; then ¢ identifies with %y = F[[Y]], and

o /ml — (A/rﬁ‘} is an isomorphism for each) EachF;(Y) is the pullback by
o of

SRy (X R0 = 007 YD Q00H00)
j j

for someq; € N, whereQj; := Xfi Py € (AM a X Fa[[X]]. Etc.

Lemma 3.24. If m is a maximal ideal in a domain R, ar@ denotes the localiza-
tion of R at m then R— ¢ /m., is surjective for any € I, where m. =m- 7.

Proof. For anyQ € R\m, there isA € R such thaty = 1 — AQ € m. Hence
(L+p+---+p7HAQ = 1 modm?, which suffices. O

Remark 3.25. The diagram of initial exponents can be used to generalize the
geometric definition of iny in year zero given in Remark 1.11. Late M and
let (X, ...,%,) denote a coordinate systemaatso that(%,. a 2 K[[X, ... %]
via the Taylor homomorphism. Let = (ws,...,w,) be ann-tuple of positive
real numbers (“weights” for the coordinates). Fdr) = > f,x* € K[[x]], we
define theweighted ordery,,(f) := min{{w,«a) : f, # 0} (where (w,a) =
> wiay) and theweighted initial exponengxp, (f) := min{a : f, # 0}, where
the o € N" are totally ordered using lexicographic ordering of the sequences
((w, ), a1, .., on). Setl = % .. Write 91, (1) for the (eighted diagram of
initial exponents{exp,(f) : f € I}. If 91 € Z(n), we define theessential
variablesof 91 as the indeterminateg which occur (to positive power) in some
monomialx®, wherea € 2 (the vertices ofn).

For the given coordinate systexn= (xg, ..., X,), let d(x) denote the supre-
mum of n-tuples @,...,d;) € (Q U {co})", ordered lexicographically, such
that:

(1)1=d<dp<--- <y

(2) X1, ...,% are the essential variables 9(l ), for somer, andd; =--- =
d =1,

(3) N() = 9w (1), wherew; =1/d;,j =1,...,n.

Here91(l ) denotes the diagram with respect to the standard ordelingg,
...,ap) of N". Setd = supd(x) (sup over all coordinate systems), =
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(dg,...,dn). Then

d> et

invx(a) = (Hx,a,O; OIl,0;...,dt .

0300) |
where d; is the last finited;. As in 1.11, there is an explicit construction to
obtain coordinateg such thatd(x) = d, and there is a correspondence between

the weighted initial ideals df with respect to two coordinate systems that realize
d.

Chapter Il. The local construction; desingularization
in the hypersurface case

The local construction that we use to define our invariank iamd establish its
important properties (for example, invariance!) is presented in Sect. 4. Proofs of
the nontrivial assertions are deferred to Sect. 5. At a first reading, one can skip the
latter and go directly to Sect. 6 where, beginning with a presentation @finv

we use the local construction recursively to definexirand a corresponding
presentation, and we prove Theorem 1.14. In the hypersurface cagg(apv

(the ordervy 5 of X at a) admits a very simple presentation, so we complete
the proof of desingularization for a hypersurface (and also Theorem 1.10; see
Remark 1.18).

4. The local construction

Let M denote a manifold ovek. Consider the following data at a poiate M:

(4.1)N = Ny(a): a germ ata of a regular submanifold of codimensign

(@) = {(h, un)}: a finite collection of pairst(, un), where eacth € 4 a
and eachuy, is a nonnegative rational number such that< p,(h);

#(a): a collection of smooth hypersurfacés > a such thatN and #'(a)
simultaneously have only normal crossings, &g’ H, for all H € & (a).

We call (Np(a),.%’(a), %’(a)) an infinitesimal presentatioifof codimension
p), and we define itequimultiple locugas a germ a&)

Sov@ =X €N px(h) > pn, forall (h, un) € .7(a)}.

Remark 4.2.We can assume (as we do below) that all “assigned multiplicities”
uk € N because, given (4.1), there is an infinitesimal presentation which is
equivalent (in the sense of Definition 4.6) and has integra{cf. Construction
4.23). But one can work with rationak, (as in [BM6]); this might be useful for
efficiency of calculation.

By a local blowing-upo: M’ — M over a neighbourhoodV of a € M,
we mean the composite of a blowing-’' = BIcW — W with smooth centre
C C W, and the inclusioW — M. (W can also be understood as a gernaat
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Given an infinitesimal presentation (4.1), we consider morphismisl’ — M
of three types:

(4.3) (i) Admissible blowing-ups: M’ = BIcW — W — M is a local
blowing-up over a neighbourhodd of a with smooth centré&C such thatC c
S andC, & (a) simultaneously have only normal crossings.

(i) Product with a line.c: M’ =W x k — W < M is a projection onto a
neighbourhoodV of a.

(iii) Exceptional blowing-upe: M’ = BlcW — W <— M is a local blowing-
up with centreC = Ho N Hj, whereHp, Hy € & (a).

We introduce a transforniNy(a'),.7(a’), £ (a')) of the infinitesimal pre-
sentation(Np(a),.ﬁg(a), Z’(a)) by a morphism of each of these three types:

(4.4) (i) Let N’ be the strict transform oN = Ny(a) by o, and leta’ €
o~Ya) such thata’ € N’ and gy (h") > pup, for all (h, un) € .7%(a), where
h’ = yext"h o 0. A transform of type (i) is defined provided sueh exists. We
write o also for the induced morphisid’ — N.) SetN,(a’) = the germ ofN’ at
a, . 7#Z@)={h, u)}, and& @) ={oc" (C)}U{H': H € &(a), @’ € H'},
whereH’ is the strict transform oH .

(i) Let a’ = (@,0) € M x k. SetN’ = N(a’) = the germ ofe~%(N) at a’,
F@)={(hoo,un)}, and& @) ={W x 0}U{H'=0c"}H): H € &(a)}.

(iii) Let a’ denote (the unique point o§~1(a) N H/, whereH’ denotes the
strict transform oH , for allH € & (a). SetN’ = Np(a’) = the germ o&r~1(N) at
a',. 7 (@) ={(hoo, up)},and& @) = {c~HC)}U{H': H € & (a), &’ € H'}.

Itis clear that, in each case aboy®l,(a’),.7(a’), & (a')) is an infinitesimal
presentation aa’. We will use the same notatiofN’ = Ny(a'), . 7 (@), £ (a'))
for the transform of(Np(a)7.76(a), Z’(a)) by a sequence of morphisms of types
@), (i), (iii).

Remark 4.5. A transformation of type (i) may be nontrivial evenNf = M and
codimC =1, so that = identity. In (iii), if H € ¢ (@), H # Ho,Hy, thenC ¢ H
andH’ = o~ 1(H); likewise, N’ is the strict transform oN (by the assumptions
in (4.1)).

Definition 4.6. Given & (a), we say that two infinitesimal presentatio(fsl =
No(a),-7 (a), # (a)) and (P = Pq(a),.7#(a), ¢ (a)) are equivalent (with re-
spect to transformations of types(i), (i) and (iii)) if:

(1) S7(a) = Sw(a)-

(2) If o is an admissible blowing-up (i) and’ac o~(a), then & € N’
and o (Yexe f 0 0) > g, for all (f, ) € .7 (a), if and only if & € P’ and
tar (Yexe"h o @) > pp, for all (h, pun) € .72(a).

(3) After a transformation of type (i), (ii) or (ii)(N’,.7 (&'), £ (")) is equiv-
alentto (P’,. 77 ('), £ (a')).

(when there is no possibility of confusion) for this notion of equivalence. We
will also write (N,.7 (a), £ (a)) ~,iy (P,-7(a), & (a)) when we have (1), (2)
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and the following weaker version of (3): After a transformation of type (i) or
(i), (N',.7 @), (@))~q,i (P, 7 @), #(@’)). We will use these ideas of
equivalence only witlg = p org = p+1. (In practice, a calculation of igvmight
considerably simplify when it is possible to replace an infinitesimal presentation
by an equivalent one in higher codimension.)

Invariants of an infinitesimal presentation. We now introduce several important
invariants of the equivalence classes of infinitesimal presentations of the same
codimension. These invariants will be used to define the successive entii@d

of invy (a).

Definition 4.7. We defingu(a) = pt.os(), 1 < (@) < oo, as

pa(h)

Hr@ = es@

Proposition 4.8. u(a) depends only on the equivalence claséN)I.%’(a), 8’(a))
with respect to transformations (i), (ii).

In other words: Giver#® (a), let (N',. 7" (a), # (a)), i = 1,2, be infinitesimal
presentations of the same codimensnrite 1 (&) = i), | = 1,2. Then
pl(@) = p?(a) if the presentations are equivalent in the sengg, (and therefore,
of course, if the presentations are equivalent in the sensgiiy). Proposition
4.8 will be proved in Sect. 5.

Definitions 4.9 Suppose thaj(a) < co. If H € &(a), we defineuy(a) =

K@) H as
X HH a(h)
. = min ’ )
.7 (@) ,H (hup)eF#@)  Ih
wherepy a(h) denotes the order of h along RN at a. We define(a) = v >
Oas
v(@) = p@) — Z pn (@) -

HeZ(a)
(We also put(a) = oo if p(a) = 00.)

Proposition 4.11 shows that theg, (a2) andv(a) are invariants of the equiv-
alence class of our infinitesimal presentati(jﬂb(a),(%’(a), %’(a)) (where the
codimensiorp is fixed) under an equivalence relatien which is stronger than
~ (i, i) but weaker thanv(iyiiym). (“~, is weaker thaﬂw(i_’ii_’iii) " means that the
equivalence class of an infinitesimal presentation with respeett@;i is a
subset of that with respect to...) We need~.. because Construction 4.23 below
survives transformations as allowed ®y (Proposition 4.24) but perhaps not an
arbitrary sequence of transformations (i), (ii), (iii).

Definition 4.10. We define-,. by allowing in 4.6 only the transforms induced by
certain sequences of morphisms of types (i), (ii), (iii); namely,
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— M g, M_1 —-- 2% M - Mo =M
T (&) T8 -1) T (&) T (a) = .7 ()

where, ifoiq, ..., 0; are exceptional blowings-up (iii), then® 1 and o; is of

either type (iii) or (ii). In the latter casegi: Mj =W x kK — W — M;_;, each
ok+1, K =1,...,j — 1, is local blowing-up with centre C= HX N HX where
HEHE € & (&), aw = oa(ak) NHEL, and we require that the §4 HE be

determined by and some fixed He & (g _1) inductively in the following way:
He =W x 0, H] =07 }(H), and, fork=i+1,...,j — 1, HX = 0, }(Ck_1), Hf =

the strict transform of H~* by oy.

Proposition 4.11. Suppose thai(a) < oo. Thenuy (a), H € ¢ (a), and therefore
alsov(a) depend only on the equivalence clasimt T (a), 8’(a)) with respect
to ~,.

The inductive construction. The successive entriez . (a) of invyx(a) will

be defined as/ ;) for equivalence classes of certain infinitesimal presenta-
tions (Np+ (2),-7 (a), # (a)) constructed inductively in increasing codimen-
sion. Semicontinuity of iny(a) depends on choosing the local data in a “semi-
coherent” way; see 4.14. The following proposition (proved in Sect. 5) is the
main tool in the induction on codimension (cf. 4.16).

Proposition 4.12. Let (N,.7 (a), £ (a)) = (Np+(a),-%+1(a), &+1(a)) denote
an infinitesimal presentation (4.1) of codimensiomp> 0. Letm=n—p —r.
Assume thal ) = 1 (i.e., there is(f,, ur,) € .7 (a) such thatua(f.) = 1,)
and that there is a regular coordinate systé€ra, ..., Xy,) for N at a, in which
9%, /0xd is invertible at a (where ¢ y,) and & (@) NN = {{x =0} : i €1},
where | C {1,...,m—1}. (¢ (@) NN meansfH NN : H € #(a)}.) Then:

(1) After any sequence of transformations (i), (i), and (ij)z@y = 1. (In
fact, par (f,) = 11, = d, where f denotes the transform of fn .7 (a’).)

(2) Put z= 8d*1f*/8x§'(1. Then7 (a) U {(Z, 1)}~(i7ii7iii).«7(a).

(3) After any sequence of transformations (i), (i), and (ifx’ = 0} and
#(a’) NN’ simultaneously have only normal crossings, dati= 0} ¢ &'(a’) N
N’

Remarks 4.13Condition (3) holds for anyz € @y a with pa(z) = 1 which
satisfies the analogous condition at The proof of 4.12 will show that, after
an exceptional blowing-up (iii)z’ = z o o coincides with the strict transform of
z; likewise, if (f,us) € .7 (a) and pa(f) = u, thenyey does not factor from
f’ =f o . Any infinitesimal presentation with ) = 1 and& (a) = () satisfies
the assumptions of 4.12 (cf. Example 4.16).

Definition and remarks 4.14.et U be a regular coordinate chart vh. Suppose
a € U. We let @(U), denote the ring of quotients of elements 6fU) =
¢ (U) with denominators not vanishing at (In the case of schemes;(U), =
\ a.) If V is a Zariski-open subset &f , we will write <2 (U )y to denote the
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ring of quotients of elements @f'(U) with denominators vanishing nowhere in
V.

The possibility of choosing local presentations ofynwn a “semicoherent”
way (see 6.4) will depend on the following observations: Assume in 4.12 that
all of the given data is defined it¥'(U)a. In other wordsN =V (z, ..., Z),
where @, ...,z are linearly independent maodg and) eachz € @/(U),;
also eachf in .7 (a) and each coordinate functiog on N is the restriction
to N of an element of(U),. By Lemma 3.5, there = 99, /x4~ is
also the restriction tdN of an element ofc”(U),. It follows that there is a
Zariski-open neighbourhood of a in U such that: (1) Eaclz € ©(U)y, and
71,...,Zp+ are linearly independent maf, for all x € V(z,.. S Zoer) C V.
(In particular,N extends to a regular submanifold ®f.) (2) Thef, the x;,
and z are all (restrictions tdN of) elements of@@'(U)y, and &;,...,Xn) is a
regular coordinate system o C V. (3) £(@)NN ={{x =0} : i €1}, and
0z /0%m = 09, /0xY is invertible at every point 0687 = {x € N : puy(f) >
us, forall (f,ur) € .7 (a)}. In particular, (Nps (a),.-7 (), ¢ (a)) induces an
infinitesimal presentatior(Np+r x), 7#(X), & (x)) satisfying the hypotheses of
4.12, at eaclx € S».

Let 0: M/ — M be a blowing-up with centr€. Assume thaC NU is a
coordinate subspace tf andC NV C Sy. It follows from the local-coordinate
description of blowing-up (Sect. 3) that *(U) is a union of finitely many regular
coordinate charts)’ of M’ such that, ifa’ € o~%(a) "U’ and iz (Yexe f 0 o) >
pt, for all (f, 1) € .7 (a), then the transforn{Np:, (&'),. 7 (a'), & (a")) (type
(i)) is given by data ir?(U”’),.

Lemma 4.15. Consider N and% (a) as in (4.1). Let ze &\ a, pa(z) = 1, and
let C be (a germ at a of) a regular submanifold of N. Assume that @) and
V(z) ¢ N simultaneously have only normal crossings, an@)VZ & (a) N N.
Then there is a regular coordinate systen¥Xx, ..., Xyn) for N at a, such that
x(@ =0and: (1) z=xyn. (2) ForalH € #(@), HNN = V(x), for some
i=1....m-1(3)C=V(x, ¢ €J), for some JC {1,...,m}.

Moreover, if U is a regular coordinate chart,a U and N, z, C are defined
by functions inr?(U ),, then there is a Zariski-open neighbourhood V of a in U
so that the conclusion above holds inMV , with each x (the restriction of) an
element of”(U)y, .

The proof is elementary. The example following shows the way we will obtain
infinitesimal presentations satisfying the hypotheses of 4.12 in our inductive
construction.

Example 4.16.Suppose(Np. (a), % +1(a), % +1(a)) is an infinitesimal presenta-
tion ata € M, with &;41(a) = 0 anduy, ,,a) = 1. Let(Np+ (&), G+1(@), £+1(2))

be its transform by a finite sequence of admissible blowings-up as in (4.4)(i). Then
(Np+r (@), G+1(@'), %4a(a’)) satisfies the assumptions of 4.12. (This follows
from the proof of 4.12: Begin with suitable coordinatesdivhere &;.1(a) = 0)

and transform.)
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In particular, suppose thgNy. (a), %+1(a), & (a)) is an infinitesimal pre-
sentation withyg @ = 1. SetE"*Y(a) = & (a) and define a transformation
of E'*(a) by an admissible blowing-up (4.3)(i) as follow& *'(a’) := {H’ :

H € E'%(a),a’ € H'}. Consider the transform@,., (a'), % +1(a’), % (a')) and
alsoE'1(a’) c & (a’) by a finite sequence of admissible blowings-up. Define
(@) = 4 (@) — E™N@) and F(@') = Gaa@) U (ETH@’), 1), where
(E™Y@’),1) :== {(tw,1) : H € E"*Y@’)} andlyq € O o denotes a generator
of the ideal ofH NN’ =H N Ny« (@'). Then (Np+ (&), %41(2"), &+1(a)) and
therefore alsqNp.; (@'), 7+1(a'), % +1(a")) are infinitesimal presentations which
satisfy the assumptions of Proposition 4.12.

Now suppose we have an infinitesimal presentapn, (a),- 7 +1(a), & +1(a))
of codimensiorp + r, which satisfies the following conditions from Proposition
4.12:

(417) (l)U,Zﬂ(a) = 1.

(2) There existz € O a, N = Np+r (@), such thatua(z) = 1 and.7%+4(a) U
{@Z, D}~ iy Fr+1(8).-

(3) V(2) and &;+1(a) N Np+ (&) simultaneously have only normal crossings,
andV (z) ¢ & +1(a) N Npsr (a).

We associate tqNy+ (a),.-7+1(a), &+1(a)) an equivalent infinitesimal pre-
sentation, in codimensiop+r + 1:
Construction 4.18Define Npsr+1(a) = V(Z) C Np+(a). Then Np«r+1(a) and
e +1(a) simultaneously have only normal crossings, &g +1(a) ¢ H, for all
H € & +1(a). Choose regular coordinatgs= (xq, . .., Xm = z) for N = Ny, (&) at
a, asin 4.15. For eachi (u;) € .%+1(a), consider the following formal expansion
(cf. Remark 3.7):

f) = > e g2+ ()24
0<qg<ps

whereX = (X4, ...,Xm_1). Recall that eaclt; 4(X), 0 < q < us, is the element

~ . 1 .
of @ﬁ,a’ N = Np+r+1(a), induced by 0 Let.7%;.1(a) denote the collection

q! Oxm’
of pairs
Ftra(@) = {(Crg, e —a) (Fou) € (@), 0<g<pr}.

Proposition  4.19. (Np+r (), F+1(2), & +1(8)) ~qi,ii i (Np+r+1(), T 41(a),
F§;+1(a)). Moreover, after any sequence of transformations of types (i), (ii) and
(iii) (4.4), the transform(Np+r+1("), -7 +1(8"), & +1(2')) of (Np+r+1(2), -7 41(a),
Z:+1(2)) is associated tqNps (@), F+1(a), %+1(2’)) as in Construction 4.18.

The proof is in Sect. 5. In general, of courgey, ) 7 1.
Remark 4.20.1f (Ny+ (a), - 7+1(a), &+1(a)) is defined by data in” (U )a, then
g

f .
restricted to

50 is (Npsr+1(@), -7 41(a), &+1(a)) (since eacte; 4(X) = a x4

N) .
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We now put

(4.21) pr2(@) = p# ()

(cf. Definition 4.7); thus I< pur+2(a) < co. By Propositions 4.8 and 4.18;.,(a)
depends only on the equivalence clas§f; (a),.-7+1(a), & +1(a)) with respect
to ~iy (and is therefore, of course, also an invariant of the equivalence class
with respect to~..).

If ur+2(@) < oo, then we set

pre2n (@) = Loz @ H H € Zra@)
(4.22) ve2@) = prea@ — Y pre2n (@)
He+1(a)

(cf. Definitions 4.9); thus/.p(a) > 0. We also set;+z(a) = co if pr+2(a) = oo.
By Propositions 4.11 and 4.19, the., 1 (a) andv;+2(a) are invariants of (i.e.,
depend only on) the equivalence clas{if: (a),-%+1(a), %+1(a)) with respect
to ~..

Construction 4.23Wheny;42(a) < oo, we how make the following construction
beginning with our infinitesimal presentatiNp. (), 7+1(a), % +1(a)) (satisfy-
ing the conditions (4.17) above). Defife= Np+r+1(a) and. 7% +1(a) = {(h, un)}
as in Construction 4.18. We can assume thapglare equal; sayi, =d € N,
for all h. (For example, we can take = max ! and replace eacth( ) by
(h9/rn_d) to obtain a presentation which is equivalent with respect§a i -)
For eachH < &;.1(a), we haveH N N = V (%), for somei =1,...,m—1; say

Xi =Xy . Set
a,
Dr+2(@) = H X,:LHZ’H() ;
HeZ+1(a)

thus D = Dr+2(a) is a monomial in the coordinates(...,Xm_1) Of N with
rational exponents. Clearlyp¢ (which has exponents i) is the greatest com-
mon divisor of theh in .7 ,1(a) that is a monomial inxy, H € & 41(a).
Define % 12(a) = {(g, q)}, Where eacty € (’r\Ta and eachu, € N, as the
collection of pairs{(g, di;+2(a)), for all h = DYg in .7.4(a), together with
(DY, (1—wr+2(a))d) provided that+p(a) < 1}. (%i+2(a) = {(D9,d)} in the
casev;+z(a) = 0.) Then(Np+r+1(8), %+2(2), %+1(a)) is an infinitesimal presen-
tation of codimensiomp +r + 1. If 11.2(a) > 0, thenu @) = 1. (The inductive
construction terminates unless<Ov;.,(a) < co.)

Of course Sy, ,,@ C S#.4(a) = S7,4(a)- MOre precisely(Np+r+1(a),176’r+1(a),
Z:+1(a)) induces a presentatiofNp+r+1(x), - 7 +1(X), %41 (x)) atx, for x in a
neighbourhood o& in Sy ,,@). Clearly, S, ,,@ = S7,,(),1402), Where

SFa@ua@ = X € S7,@ 1 welX) = (@)}

A local blowing-up which is admissible (i.e., a morphism of type (i)) for
(Np+r (a),-yTﬂ_(a)a ;/(r+1(a)) is admissible fOl(Np+r+1(a)7 e(g;+2(a)7 ;/(r+1(a)) if and
only if its centreC Sy, ,,a). The following proposition is proved in Sect. 5.
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Proposition 4.24. Consider a sequence of transformations (i), (ii) and (iii) of
(Np+r (@), F+1(), &i+1(a)) as allowed by~, (Definition 4.10). If we assume re-
cursively that the centres of the transformations of type (i) are admissible for the
corresponding transforms c(Np+r+1(a), G2(a), %m(a)), then each succeeding
transform (Np+r+1(2'), %+2(a’), %+1(2’)) is associated to(Ny (a'), 7 +1(a’),
Z+1(a)) as in 4.23.

In particular, the equivalence class @ﬁp+,+1(a), G(a), éfm(a)) with re-
spect to~, depends only that ofNp.(a), Z+1(a), % +1(a)). It follows that if
Zi+2(@) C &41(a), then the equivalence class (fly:r+1(a), %+2(a), &i+2(a))
with respect to~,. depends only on that ofNy (a), 7+1(a), % +1(a)) (and on
% 12(2)) (cf. 4.16).

Remark 4.25. If (Np+(a),-%+1(a), %+1(a)) is given by data inc?(U)a (as
in 4.14), then so ig{Np+r+1(a), %+2(a), &+1(a)). This follows from 4.20 since
passing from(Np+r+1(a), -7 +1(a), %+1(a)) to the latter involves only division
by the regular functiorD9.

5. Proofs

We prove Propositions 4.8, 4.11, 4.12, 4.19 and 4.24. We follow the notation of
Sect. 4.

Lemma 5.1. Letac M and leto: M’ — W — M be a local blowing-up over
a neighbourhood W of a with smooth centre=Ca. Let & € o—1(a). Suppose

that f € @y 4. Setf = y&’c‘c’a(f)f oo € (2, Where y,c denotes a generator
of T, —1cyar- If tic a(f) = pa(f), thenpg (') < pa(f).

Proof. This is an elementary Taylor series computation (cf. [BM6, Lemma 2].)
O

Proof of Proposition 4.8Clearly, ;i(a) = oo if and only if Syza) = Np(a); i.e., if
and only if Sy is (a germ of) a submanifold of codimensiprin M.

Suppose thap(a) < oo. Let Pp = W x k — W — M be a morphism
of type (ii) ata € W, and consider the transforn{N (Co), .- F (o), éf(co)) of
(N,.7(a), 4 (a)) atco = (a,0) € Py (cf. (4.3), (4.4)). Letyo denote the arc
() = (a,t) in Py. Consider the sequence of blowings-up

o
— P 5Py — - — P 5Py

with successive centreg = v3(0), whereygs. is defined inductively as the lifting
of v t0 Pg+1. (In other Wordsa[;ll(c,@)ﬂfﬂﬂ = {cg+1} forall 5 > 0, wherelp =
{a} xk andIs:1 is the strict transform of 5 by 0 3+1.) Theno .1 induces a trans-
formation of type (i),(N(cs),- 7 (cs), # (cg)) — (N(Cs+1),- 72 (Cs+1), & (Cs41))
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(i-e., picy,, (Yexc"h 0 a541) > pn, for all (h, un) € .F2(cp); cf. (4.4)(i)), succes-
sively for eachs > 0: This follows from the transformation formula in power
series (cf. proof of Lemma 5.2 below).

We introduce a subsé& of N x N depending only on the equivalence class of
(Np(a),-7(a), & (a)) with respect to~i iy, as follows: First, say tha¥( 0) € S,
£ > 1, if after 5 blowings-up as above, there is (a germ of) a submanift#d
of codimensiorp in the hypersurfaceﬁ_l(cg_l) such thatW C So(cs)- (Then
necessarily\p = aﬁ‘l(cﬁ_l)ﬂN (cg) andWy, & (cg) have only normal crossings.)
In this case, we can blow uBg locally with centreWy. PutQp = Pg, dp = C3
andég = vg. Inductively, say thatd,«) € S, a > 1, if (6,a — 1) € S and the
following holds: Letr,: Q, — Q._1 be the local blowing-up with centiy,, 1,
andé,, be the lifting of6,_1 by 7. Then:

(1) 7o induces a transformation of type (N (da—1), -7 (da—1), & (da—1)) —
(N(da), - 7(da), £ (da)); i-€., i, (Yexc"NoTa) > pn, for all (h, un) € .72/(da—1).

(2) There exists a submanifolf, of codimensiorp in the smooth hypersur-
facer; (W, _1) such thatW,, C Sy (q,). (NecessarilyW,, = 75 1(W,—1)NN(d,);
clearly W,, and #'(d,) simultaneously have only normal crossings.)

SinceS depends only on the equivalence claszﬁm,f(a), T (), éi’(a)) with
respect to~ iy, the proposition is a consequence of the following lemma.l

Lemma 5.2. S=0 if and only ifu(a) = 1. If S # (), then

S={Ba)eNxN: g(u@a—-1) —a>1}.

Lemma 5.2 specifieg(a) uniquely; in the case that ¥ p(a) < oo, as
@) =1+ suRg yes(a+1)/5.

Proof of Lemma 5.2Me can choose a regular coordinate systgm. (., Xy) for

N = Np(a) (m = n—p) such thata = 0 and, for eactd € & (a), HNN =V (x),
forsomei = 1,..., m. We will write (X, . . . , Xm, Xo) for the corresponding regular
coordinate system foN(co) = N x k. There is a regular coordinate system
(Y1, - -, ¥Ym, Yo) for N(c;) in which o1: N(c;) — N(cp) is given byxg = yp and

Xe =YoYe, £=1,...,m. In these coordinates; =0, I1 =V (y1,...,Ym), and

F(c) = {(W, ) = O "hoor,um): (h,un) € (o)} -

(Eachh =h(xy, ..., Xm), independent oko.)

We can assume that al}, are equal; say, =d € N, for all (h, un) € .F7(co).
If u(@) < oo, then theh’ in .7%(c;) admityé”'(e‘)_l)d as greatest common divisor
which is a power ofy = Yexe. Write h' = y*@ =k for all b/, and seti(c;) =
min ,Ucl(ﬁl)/d- Takeh’ such thath’ realizes the min; it is clear from the formal
expansions that the initial form df" equalsthat of h, so zi(cy) = p(co) = p(a).

It follows that, after § blowings-upoy,...,03 as above, the transform
FE(cg) = {(h',d)} of .F(cy) satisfies the following condition: There is a
regular coordinate systeny(...,Ym,Yo) for N(cg) in which g1 0---00g is
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given byxo = yo andx; = yoy,, £ = 1,....m, I's = V(y1,...,Ym), and each
h' = yJW@=14h “where theh’ do not admityy = yexc @ common factor.

LetWp = ogl(cﬁ,l) NN(c). ThenWy C So#(cs) if and only if uwo_rcﬂ(h') >
d, for all h’ in .7%(cs). Since theh’ do not admityp, as common factoiW, C
Sx(cs if and only if 5(u(a) — 1) > 1. In particular,u(a) = 1 if and only if
Wo ¢ Sz (c,) after any numbep of blowings-up as described.

Now suppose thatVo C Sy(c,), and considet: Q1 — Qo = P as in the
proof of Proposition 4.8. There are regular coordinages. (., zn, Zo) for N(dy)
in which zy = Zxc and 7 N(d) — N(dp) = N(cg) is given by the identity
transformationy, =z, £ =0, ..., m. In the coordinatesz(, ..., zyn, Z), we have
d; =0,

F(h) = {(W. ) = @ *h(@),d): (h,un =d) € T(do) = 7(cs)}

and eachh’ = h(z). Thush’ = zZ/*@~14=d/ “for all b’ in .77(dy), where
the h’ do not admitz, as common factor. Aftes: such blowings-upr, . . ., T4,
F£(dy) = {(h',d)}, where eacth’ = z/(*@~14=edh/ “and theh’ do not admit
Zp as common factor. As abové/, = 7, 1(W,_1)NN(d,) C S (d.) if and only
if ﬂ(u(a)—l)—aZl. O

Proof of Proposition 4.11LetH € & (a). Letop: Po=W xk — W — M be a
morphism of type (i) aB € W. Putag = (a,0), H{ =W x 0, H? = o5 *(H). We
follow o¢ by a sequence of morphisms of type (iii) (exceptional blowings-up),

Oj+1 o o
— P~ P — o 5Py -5 M,

where eachyj., j > 0, denotes the blowing-up with cent® = H} N Hj,
andH{™ = 6,71(C)), H{™ = the strict transform oH]. Let yo denote the arc
7(t) = (a,t) in Po, and, for each, takea;+1 = 7;+1(0), wherev;.1 is the lifting

of 4 by gj+1. The sequence of morphisrag induces a sequence of transforms
(N(a),-7(a), # (a)) of our infinitesimal presentatiofiN (a),.7(a), & (a)),

as allowed in the definition of, (4.10).

There is a regular coordinate systex, (.., xm) for N = Ny(a) (m=n—p)
such thata = 0 and, for eaclkK € & (a), KNN =V (x) for somei =1,....m
(we setx; = X ). Write (xq, ..., Xm, Xo) for the corresponding regular coordinate
system forN(ag) = N x k. We can assume that = x4. Then there is a regular
coordinate systenyq, ..., Ym, Yo) for N(a;) in whicho1: N(a;) — N(ag) is given
by Xo = Yo, X1 = Yoy1, Xe = Ve, for £ =2,...,m, and in whicha; = 0,y1 =yy (YH
meansy,1). Proceeding inductively, there are regular coordinages (. , Ym, Yo)
for eachN(g) in whicha = 0 andojooz0---00j: N(g) — N(ap) is given by

X0=Yo, XH :xl=yéy1=yéyH y Xe=Ye, £=2,....m.

We can assume that al}, are equal; say, =d € N, for all (h, up) € .F4(a).

SetD = [] x/®. ThusDY is a monomial in X, ..., Xn) With exponents
KeZ (a)
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in I, and DY is the greatest common divisor of thein .7Z(a) which is a
monomial inxg, K € & (a). In particular, for somé = DY in .72(a), g = gn
is not divisible byx; = x4 . Therefore, there exists> 1 such thayus (g o mj) =
tg (gn om) for all j > i, wheremj ;= ggooy0---00j. (We can simply take
to be the least order of a monomial not involvirg in the Taylor expansion of
gH-)

On the other hand, for eadh = D% in .72(a), pa (g o 7)) increases as
j — oo unlessg is not divisible byxy. Therefore, we can choose= D¢,
as above, and large enough so that we also havé;) = gy (hom)/d, for all
j >i.Clearly, ifj > i, thenuy(a) = u(g+1) — 1(g), so the result follows from
Proposition 4.8. O

Proof of Proposition 4.12We can assume tha = 0 in the given coordinate
system Xy, ...,%m) for N (i.e., eachx (a) = 0). For eachf(, us) € .7 (a), the
Taylor expansion of ata with respect to these coordinates can be written (cf.
Remark 3.7) as

(53) F00 = S GrglOXE+ o 0O

0<g<ps

whereX := (X1, ...,%m—1) and ua(Ci ) > i — g, 0 < g < . By hypothesis,
Ch, it is invertible.

Setz = 997, /0x471, whered = yu4,. By the formal implicit function
theorem,

(5.4) z = u() (xm — (X)) ,
whereu us a unit. We introduce a formal coordinate change,
X=X, £=1....m—=1 X, =Xn— ¢X) .

Note. Suppose thay(x) = g(Xs, ..., X%n) is a formal power series. Writg(x) =
¢'(x’) in the new coordinates’; i.e., ¢/(x") = g(X',x}, + ¢(X')). Then, for all
q EN, 3¢/ (x")/ox.% = d9g(x)/Oxsm. In particular, by (5.4),

adflf/
(5.5) oot~
(~ means = up to an invertible factor).

Therefore, after dormal coordinate change as above, we can assume (drop-
ping primes) that in (5.3) abovgya(Ciq) > wt —q, 0 < q < p, Crd IS
invertible, andcfhd 1=0 (by (5.5)); moreover, eaah 4, 0 < g < ys, regarded
as an element O(N a/(z)fN a, IS (a germ at of) a regular function on the reg-
ular submanifolav (z) € N. (X = (X1, ..., Xn_1) iS aregular coordinate system
for V(2).)

In particular,S7@) C V(2). It follows that (as germs &)

Sr@ = XeV@): ux(Crg) > m—q, 0<q<p, forall(f,u) .7 @)}.
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The effect of an admissible blowing-upet o: M’ = BIcW — W — M be
a local blowing-up with smooth centr€ C Sg(,. By Lemma 4.15, we can
assume tha€ = V(z,x,k € I) c N, wherel C {1,...,m—1}. There is a
neighbourhoodJ of ain N, in which g, . .., Xm_1, z) form a regular coordinate
system. LetN’ denote the strict transform & by o. OverU, o: N’ — N can
be identified withU’ = BlcU — U. Letk €| and letU; = U’\V (x)’, where
V (%)’ is the strict transform o¥ (x) C U. Along the fibreo=1(a) in U/, o is
given by a formal coordinate substitution

Xk =Yk, Xe=YYe, L€l U{MN{K}, Xe=ye, £&1 U{m}.

Although yn, here is a formal variableys,...,yn_1 are regular functions on
Uy; the fioreo—%(a) is given inU/ by yx = 0 andy, = 0, ¢ € | U {m}. The
above coordinate transformation makes sense as a formal substitution at any
a’ € o7(a) (wherey,, ¢ € I U {m}\{k} need not be zero &).

Leta’ € o-Y@)NU}. Ata’, 2’ ==y, Y(zo o) ~ ym and, for €, i) € .7 (),

fy) =y (Foo)y) = D crq@Yh+ G Wy

0<g<pt
wherec/ , = Gy 00 andcy g = ykf(“f*mcf,q 07, 0<q < pf. (We write
oc=(o1,...,0m) and @1,...,om_1) =c.) In particular,
10971,
dl oydt T Ym (Crz.a *+ YiYm(-+)) -

Sincey vanishes and, 4 is invertible ata’, 99~ /9y§~* ~ 2.

Thereforeu, (f') > us for all f €. .7 (a) (i.e., o induces a transformation of
type (i) ata’) if and only ifa’ € V(z') and puarGrr g > ¢ — Qq, 0 < g < pt, for
all (f,u) € .7 (a). In this case, we have 7y = 1 andSz ) = {y € V(Z) :
py(Cirq) = pr —d, 0<q < pyr, forall (f, p5r) = (F/, ) € .7 (@')}. Clearly,
# (@) NN’ comprisesV (yk) and eachV (y,), 1 < ¢ < m—1 (¢ # k), such that
V(x0) € “(a) NN.

On the other hand, for ang’ € o~%(a), if o induces a transformation of
type (i) ata’, thena’ € U/, for somek € |: To see this, suppose that €
U"\ Uker Uk- Theno is given formally ata’ by the substitution, =y,, £ € 1,
andx, = Y¢ym, £ € |. For eachf(, us) € .7 (a),

F@y) =y (Foo)y) = D Crgly)+Cr ),
0<g<pst

where ¢/, = G 00 andcrg = Yo' Ve g o 0,
pc,alCrg) > ut —q > 1, it is clear thatc, ¢(0) = O,
(f,ut) € 7 (a), andgy, , is invertible; thereforguy (f/) = 0.

We have thus established the assertions given by Proposition 4.12 after an
admissible blowing-up (transformation of type (i)). The effect of a transformation
of type (ii) is trivial, so it remains to consider type (iii).

. Since

0<qg<up
0<q < ut, for all
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The effect of an exceptional blowing-upet ¢ be a local blowing-up oM
with centreC = Hy N Hy, whereHp, H; € #(a), and leta’ denote (the unique
point of) c~1(a) N H{ (whereH, is the strict transform oH;). We can assume
thatH NN =V (x+1), i =0,1. As above, there is a neighbourhoddof a in
N over whicho can be identified wittd’ = BlcU — U. Thena’ € U’\V (x1)’,
ando is given formally ata’ by the substitutiorx; = y;, X2 = y1y2, andx, =y,
¢ > 2 (wherey(a’) = 0). Of courseys, ..., Ym—1 are regular functions a’, and
Y1 = Yexc

Sincez ~ Xy, we havez’ =z oo ~ ym. For eachf(, us) € .7 (a),

f'y) = Foo)y) = D crg@ya+Crr ym

0<q<pt

wherece/ g = Cr q(Y1,Y1Y2,¥3,---), 0 < g < pr. Therefore,c;, 4 is invertible
and, for all €,uf) € .7 (@), par(Crgq) > pf — 09, 0 < g < . Moreover,
9937 Joyd—1 = (99 Jox8 ) oo ~ ym. In particular,i 7y = 1 andSy(ay =
{y € V(Z) : mylcrrg) > —a . 0<q < g, forall () = (F,pur) €
7 @)}. (ThusSz@) C 0 Sr(@).)

We thus obtain the assertions of 4.12 after an exceptional blowing-up. The
proposition follows on repeated application of transformations of type (i), (ii) or
(iii). O
Proof of Proposition 4.19This is essentially a repetition of the proof of Propo-
sition 4.12, but using the expansion of edchn .7 .1(a) with respect to the
regular coordinate systermm(. .., xm = z) of Construction 4.18. O

Proof of Proposition 4.24This is a simple consequence of the transformation
formulas. Consideh in .7 .1(a), h = DY as in Construction 4.23. After a
transformation of type (i) (admissible blowing-uy), the equation

Yoxchoo = (Yoo V@D 0) - (Yor®go o)

gives the factorization oh’ = y;3h o o asD"¢’ (i.e., the analogue fon’ of
h =DYg) for the following reasons: Except oy, anyyy:, H' € &.1(@’), is
a common factor of aly’ = y;®4g o ¢ if and only if x4 is a common factor
of all g. (H here denotes the element &f.,(a) whose strict transform isl’.)
On the other hand, for any such thatua(g) = 1, ¢’ is not divisible byyeyc.
A similar law for the allowed transformations of type (iii) (exceptional
blowings-up) has been implicitly remarked in the second-last paragraph of the
proof of 4.11. O

6. invx and its key properties

LetM be a manifold an& a closed subspace. Consider an infinitesimal presenta-
tion (Np(a)7 “G(a), é‘i(a)) of codimensiorp ata € M. We introduce transforms
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X’ of X by the three types of morphisms depending (di(a), 41(a), #1(a))
given by (4.3):

(6.1) (i) If o is an admissible blowing-up, theX’ is the strict transform of
X by o.

(i), (iii) If o is either the projection from the product with a line, or an
exceptional blowing-up, theX’ denotess—(X).

Consider a (Zariski-semicontinuous) local invariagt. of X; for example,
tx x = Hx x, the Hilbert-Samuel function oK at x, or tx x = vx x, the order of
X atx. Recall thatS, a) := {X € [M|: xx > x,a}. Let S(a) denote the germ
of S, (a) ata,; i.e., the germ at of the ix-stratum{x : ux x = tx.a}.

Definition 6.2. (Np(a), “f(a), %i(a)) will be called a €odimensionp) presen-
tation of .x_ . at a with respect to #;(a) if:

(1) Ssia) = S(a).

(2) If o is an admissible blowing-up (4.3) (i) and & o ~1(a), thenuy o =
ix,a if and only if & € N’ (where N denotes the strict transform of N N,(a))
and o (Yexe g © @) > g, for all (g, 1) € “1(a).

(3) Consider any finite sequence of transformations of types (i), (i) and (iii)
of (Np(a), “1(a), #1(a)) as allowed by~ (Definition 4.10). If(Ny(a'), “1(a),
Z1(a’)) and X' denote the transforms diNp(a), “1(a), #1(a)) and X (respec-
tively) by this sequence, then' Xy »» and (Np(@'), 41(a’), #1(a’)) satisfy the
analogues of (1), (2) above.

We define aqodimensionp) presentation of .x . at a as a codimension p
presentation with respect t#;(a) = .

Remarks6.3. (1) Any two presentations ek . at a with respect to;(a) are
equivalent (with respect te-,). (2) The equivalence class of a presentation of
1x,- at a with respect to%(a) depends only on the local isomorphism class of
(M, X, #1(a)).

Definition and remark 6.4We will say tx . admits asemicoherent presentation
if M can be covered by regular coordinate chattssuch that: (1)x . has a
presentation(N (x), £1(x), #1(x) = 0) at eachx € U. (codimN(x) may vary
with x.) (2) Leta € U. Then there is a Zariski-open neighbourhodédof a
in U, together with a regular submanifold of V (of codimensiorp, say) and
a collection%; = {(g, 1q)}, each defined by data it¥'(U)y (cf. 4.14), such
that, for allx € S, @@ NV, txx = tx,a and the germs akx of N and each
g give the presentationfN (x), £1(x), #1(x) = 0). More generally, we define
semicoherencef presentationgN(x), 41(x), #1(x)) with respect to#1(x) by
adding the condition that, for all € S, @) NV, 1(X) = {H € Z1(a): x e H}.

Suppose thaM can be covered by regular coordinate chattssuch that,
for all a € U, there exists a presentaticém @), “(a), “1(a) = (Z)) of ix,. ata,
defined by data in”(U), (as in 4.14). It follows thatyx . admits a semicoherent
presentation.
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In Chapter IIl, we will show that the Hilbert-Samuel function admits a semi-
coherent presentation. However, Xf is a hypersurface (i.e.% is principal),
this is very simple becausky . can be replaced byx . (by Remarks 1.4);
the following proposition will allow us to complete the proof of resolution of
singularities in the hypersurface case.

Proposition 6.5. Suppose that X is a hypersurface. Let X. If g is a generator
of K a (so thatg has order d = vy 5), then %1(a) = {(g,d)} determines a
codimensiorD presentation ofx . at a (such thatuy; ) = 1). Moreover,vy .
admits a semicoherent presentation (with codimen8iand ., .y = 1 throughout
X).

Proof. Clearly, Sg;a) = S.(a). If o is an admissible local blowing-up at
((4.3)(i)) anda’ € o~Y(a), theng’ := y5dg o o generates%: .. After a trans-
formation of type (ii) or (iii), % o is generated by := g o 0. If No(a) =

germ of M ata and #y(a) = 0, then (No(a), £1(a), #1(a)) is an infinitesimal
presentation of codimension 0 satisfying the hypotheses of Proposition 4.12. The
first assertion follows from 4.12 and 4.13. Sineg is of finite type, it is clear

that we can choose a codimension 0 semicoherent presentatign ¢ivith the
function g of 6.4 regular on each coordinate chlj. O

Suppose thaX is a hypersurface. We can now use the inductive construction
of Sect. 4, beginning with a (semicoherent) presentatiar of to define ink (a)
and prove Theorem 1.14. Exactly the same arguments will apply to the general
case once we obtain a presentation of the Hilbert-Samuel funktion
We begin with a general proposition that will be used to establish “semi-
continuity” of the exceptional sefs'(a). (See Sect. 1.) Consider a sequence of
transformations
Misg 25 Mj — - — M; 5% Mo=M
Ej+1 Ej Es Eo=10
where, for eaclj, oj+1 is a local blowing-up with smooth cent® such that
C; andE; simultaneously have only normal crossings, & is the collection
of smooth hypersurface{:vjﬁ(q) andH’, for all H € E;} (whereH’ denotes
the strict transform ofH). If a € M, we setE(a) ={H € E; : ac H}. Let.
denote a function with values in a partially-ordered set, defined onMachith
the following properties: is constant on eacky;, ¢ is Zariski-semicontinuous
on eachM;, and. is infinitesimally upper-semicontinuous (i.e.,d@fe M;, then
u@) < u(oj(a))). If a € M, leti denote the smallest index such that(a) =
t(a) (whereay := (ox+1 0 --- 0 0j)(a)), and setE,(a) = {H € E(a) : H is the
strict transform of some element &f(a;)}.

Proposition 6.6. Let a € M;, for some j. Then there is a Zariski-open neigh-
bourhood U of a in N such that, for all xe S NU, E,(x) = E(X) NE,.(a).

Proof. By induction, we can assume the resultNiy, k < j. Then there is a
Zariski-open neighbourhodd of a such that, ifx € U, then: (1)c(x) < «(a); (2)
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1(x-1) < (g-1); (3) E(X) € E(@); (4) E.(x—1) = E(x—1) N E.(8_1) whenever
X_1€ S,,(aj._l); (5) x ¢ Cx if ax ¢ C, for all k < j. We consider 3 cases:

(@) «(a) = t(ay—1). Sincew(@) = ¢(x) < u(x—1) < ¢(a—1), all terms are equal.
ThusE,(a) =E(@N{H': H € E(g_1)} andE(X) =EX)N{H': H €
E.(x-1)}. By (4), E.(x) = E(X) N E.(a).

(b) «(@) < u(a—1) and¢(x) < «(X—1). Then, by definitionE,(a) = E(a) and
E,(X) = E(x), so the result follows trivially from (3).

(c) v(a) < u(a—1) bute(x) = ¢(X-1). Thene(X_1) < u(gj-1), SOX_1 & Cj_1
andoj induces an isomorphism between neighbourhoods ahdx;_, (taking
E(x) to E(x;—1) andE,(x) to E,(x_1)). We haveE,(a) = E(a), so we have to
prove E,(x) = E(x): Leti be the leask such that(x) = «(x). Theni < j and

t(X) = u(X—1) =--- =¢(x). Thus, forallk =i,...,j =1, u(X) < ¢(a). It follows
from (5) thatxx ¢ Cx andE(X) = E(X), E,(X) = E,(%). ThenE,(x) = E(%),
SO E,(x) = E(X). O

Definition of invy. We consider a sequence of transformations

O’j+l g1

— Mjyg — M — - — M7 — Myg=M
(6.7) Xi+1 X X1 Xo =X
Ej+1 Ej El Eo =E

where, for each,

(1) oj+1: Mjs1 = BlgW, — W, — M; is a local blowing-up with smooth
centreC; — W, andC;, E; simultaneously have only normal crossings.

(2) Xj+1 is the strict transfornX’ of Xj by oj.1.

B)E+1={H': H € F }u{aj;}(c,-)}, whereH’ denotes the strict transform
of H. (By (1), Ej+1 has only normal crossings.)

If a € M;, setE(a) = {H € E : a € H}. Write gj = gj+10--- 0 g,

i =0,...,j —1, andoj = identity. If a € M;, seta; =oj(a), i =0,...,].

For alla € Mj, j > 0, setiny (@) = Hx a (or invyx(a) = v1(a), where
v1(a) = vx a, if X is a hypersurface). Then ipy is Zariski-semicontinuous on
eachM,;.

Assume now that each centre of blowing-Qpis 1/2-admissiblei.e., inv,
is (locally) constant orC;. If X is a hypersurface, then ipy is infinitesimally
upper-semicontinuous (i.e., ipy(a’) < invy(a) for all a € M; anda’ ¢
oj:i(a),j > 0) by 5.1. In general, iny. is infinitesimally upper-semicontinuous
by Theorem 7.20.

Definitions 6.8 Suppose a M;. Let i be the smallest k such thalv, ,(a) =
invy/2(a), and set B(a) = {H € E(a): H is the strict transform of some el-
ement of Ea)}. Put #1(a) = E(a)\E(a). Set g(a) = #E'(a), andinvy(a) =
(invy/2(a), si(@))-

Clearly, inv(a) is a local invariant of the tripl§M;, X, E(a)). It follows
from Proposition 6.6 that invis Zariski-semicontinuous oM, for all j. It is
also clear that invis infinitesimally upper-semicontinuous.
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We now assume thaf is a hypersurface, so that we can use Proposition 6.5
above. But all of the following arguments hold in general, once we construct a
semicoherent presentation of the Hilbert-Samuel function.

Proposition 6.9. For all a € M;, j > 0, there is a (codimension zero) presen-
tation (No(a), %1(a), #1(a)) of 11 = vy . at a with respect t0%1(a) satisfying
the hypotheses of 4.12. Such presentations can be chosen foraalMa in a
semicoherent way.

Proof. Let a € M;, j > 0. Leti denote the smallest indeik such that
v1(@) = vi(ak). Then &1(a) = 0. By Proposition 6.5, there is a codimension

0 presentatior(NO(a),%(ai),%i(ai) = (Z)) of vy at g, where g @) = 1. In-
ductively, for eachk =i,...,j — 1, ox+1 induces a transformation of type (i),
(No(ax), “i(a), #i(a)) — (No(8ks), %i(&ks), Zi(aks)). Then (No(a), % (a),

é’—’l(a)) is a presentation af; ata with respect to%;(a), which satisfies the hy-
pothesis of Proposition 4.12, as in Example 4.16. The second assertion follows
from Propositions 6.5 and 6.6, and Remarks 4.14. O

Leta € Mj,j > 0. Let (No(a), “(a), Fa‘i(a)) be as in Proposition 6.9, and
define
@) = Z(@@)u (EXa), 1),

where (E*(a),1) := {(/4,1) : H € E}@)} andly € na generatesH ,.
Clearly, (No(a),-71(a), #1(a)) satisfies the hypotheses of 4.12 (as in 4.16),
and its equivalence class (always with respecttg depends only orEl(a)
and that of(NO(a), “(a), %i(a)); thus only on the local isomorphism class of
(M, X,E,E%(@)). It follows from 6.6 and 6.9 thafNo(a),.71(a), #1(a)) can be
chosen for alla € M; in a semicoherent way.

Moreover,(No(a),.T/{(a), (‘fl(a)) is a (codimensiorD) presentation ofnv; at
a with respect to%1(a) in the sense that:

(6.10) (1) S.71(a) = Shvy(a)-

(2) If o is a local blowing-up ata where centreC is 1-admissible(i.e.,
invy is constant orC) anda’ € o~(a), then iny(a’) = invy(a) if and only if
fiaYexo' f 0 0) > pir, for all (f, ur) € 7A(a).

(3) The analogues of (1), (2) hold after any sequence of transformations of
type (i) (1-admissible local blowings-up).

Remark 6.11.1t is possible to define invafter transformations of types (ii) and
(iii) as well, so that “presentation of ia¥ can be defined in complete analogy
with Definition 6.2. But we do not need this; transformations of types (ii) and
(i) are used only to establish invariance gf(a), r > 1, by test blowings-up
(Propositions 4.8 and 4.11).

In summary: Given a sequence of local blowings-up (6.7) with centres which
are 1/2-admissible, we také&;(a) = E(a)\E'(a), a € M;, and introduce a (semi-
coherent) presentatio(mo(a), “G(a), Zl(a)) of invy , ata with respect to%;(a),
of codimension 0 (in the hypersurface case). Setting m\invy,,,s1), where
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si(a) = #E'(a), and adjoining(E'(a), 1) to “1(a), we obtain a (semicoherent)
presentation(No(a), . 71(a), #1(a)) of invy ata with respect toy(a).

By 4.18, 4.19 (and 4.20), there is an equivalent (semicoherent) codimension
1 presentatior(Ny(a), . 71(a), #1(a)) of inv; ata with respect to; (a).

Definitions and remarks 6.12Ve defineuz(a) = .57, as in (4.21). It follows
from Proposition 4.8 thatix(a) is a local invariant of(M, X, E,E'(a)); 1 <
u2(a) < oo andpz(a) = oo if and only if .FZ1(a) = 0. If uy(a) < oo, then (as in
(4.22)) we set

p2n (@) = pon@H H e #1(a) ,
voa) = pa(@)— > p2n(@) .
He&(a)

Thusv,(a) > 0. Also setp(a) = oo if pp(a) = co. Put invlé(a) = (invy(a); 2(a)).
It follows from 4.11 that in\{% (a) is a local invariant of(M, X, E, E(a)).

Proposition 6.13. inv1% is Zariski-semicontinuous on each; Mf Cj is 13-
admissible (i.e.jnvlé is (locally) constant on @, theninvlé(a’) < invli(a)
for all a’ € o~ (a).

Remark 6.14.In the case of analytic spaces owerwherek is not algebraically
closed, the argument following actually shows thatlig"n\(or, more generally,
invr+%, r > 1, and thus iny) is “Zariski-semicontinuous” in the weaker sense
of the paragraph following Definition 3.11. This suffices for all of our results,
except for canonical desingularization in the noncompact case. In fact, though,
Zariski-semicontinuity (in the sense of Definition 3.11) follows becausgmv

is invariant under any finite field extension, and a germ of an analytic functlon
which vanishes orﬁnv 1(a) at some point will vanish also oﬁm, 1(a) when

defined over a finite extensmn &f

Proof of Proposition 6.13This follows from Constructions 4.18 and 4.23, and
from semicoherence qNo(a),-71(a), #1(a)). Recall thatuy = d for all (h, un) €
.7¢1(a) (in the notation of 4.23). Oy, (), v2(X) = j MiN, (a) ux(D{d h). The
first assertion follows, therefore, from semicontinuity of multiplicity. The second
assertion follows from Lemma 5.1 because(Cjf is 11 admissible, iny(a’) =
invi(a) wherea’ € ajﬂ(a) and g denotes an element of minimal order among
the h/DY, theng transforms byoj+1 ata’ according to the law in Lemma 5.1
(cf. proof of Proposition 4.24). O

If vo(a) = 0 oroo, setink(a) = invlé(a). Suppose & »(a) < oo. Construc-
tion 4.23 provides a (codimension 1) infinitesimal presentafiNia), ‘%(a),
(i(a)) such thafu«,e) = 1, whose equivalence class (with respect{9 depends
only on that of(No(a) Z1(a), “1(a)) (by 4.24). Moreover(Ny(a), %(a), #1(a))
is a presentation of iq\g ata with respect to#;(a), in analogy with (6.10). Using
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Remark 4.25, we see that i{%vadmits a semicoherent (codimension 1) presen-
tation on eachV);. (If a € M; andw,(a) = 0 or oo, then Sm,ll(a) = Sy, ()
2

and (Nl(a),.,%l(a), 551(a)), as defined above, is a codimension 1 presentation
of invl% at a with respect to#;(a).)

Now let us assume that the cent@sof thes;.1 in (6.7) are all §-admissible.

Definitions 6.15 Suppose & M; and0 < v»(a) < co. Let i denote the smallest
k such thatinvlé(a) = invl%(ak), and set B(a) = {H € #i(a) : H is the
strict transform of some element &f(a;)}. Put %(a) = #1(a)\E?(a). We set
s(a) = #E?(a), andinvy(a) = (invlé(a),sg(a)). (If »»(a) = 0 or oo, we set
invy(a) = invx(a).)

Clearly, inw(a) is a local invariant o M;, X;, E(a), E*(a), E%(a)). It follows
from Proposition 6.6 that invis Zariski-semicontinuous oM, for all j. It is
also clear that inyis infinitesimally upper-semicontinuous.

When 0< 1»(a) < oo, we continue inductively: Lea € M;, j =0,1,..,
and Iet(Nl(a), %(a), ?}Sl(a)) be a codimension 1 presentation offrg\ata with

respect to#;(a). Then (Nl(a), “(a), 55'2(a)) is a codimension 1 presentation
of invl% at a with respect to%,(a) that satisfies the hypothesis of Proposition

4.12 (as in 4.16; cf. proof of 6.9). Define%(a) := % (a) U (E?(a),1). Clearly,
(Nl(a),.%(a), &‘g(a)) satisfies the hypotheses of 4.12, and its equivalence class
depends only on the local isomorphism class(M, X, E(a), EX(a), E*(a)).
Moreover, (Nl(a),.%(a), ng(a)) is a codimension 1 presentation of jnat a
with respect to%>(a). Then iny admits a semicoherent presentation on ddgch
(using (N1(-),-7(-), #2(-)) on the set where & v;(-) < ).

We thus continue inductively, first to defing,i(a), and thens.i(a) after
assuming that all centre3; in (6.7) are ( + %)-admissible. In general, of course,
the semicoherent presentation that we construct fo,r%mnr inv;+1 will have
codimension that varies according to the stratum. Eventually, we tegch =
dimyM; such that 0< 11(a) < oo, r < t, andsg(a) = 0 or co. Then we
define ink(a) = (invi(a); n+1(a)). In this case, alread@ny, (a) = Snvy (a). Our
construction provides a codimensit)presentatior(Nt (@), 7 (a), éﬁ(a)) of inv;
(or of invx) at a with respect to#;(a).

Remark 6.16. Suppose that iny, = v; admits a codimensiop presen-
tation (Np(a), “1(a), #1(a)) at a € M;, wherep > 1. Then iny(a) =
(r1(a),s1(a);1,0;...; 1,0) (i.e.,, (10) is listed p — 1 times). Moreover, if
(Nl(a), z1(a), ‘(?Sl(a)) is a codimension 1 presentation of {ny at a, then our
construction provides an (equivalent) codimenqun'resentatior(N,;(a), g/ (a),
#1(a)), whereN;(a) C Ny(a).

Proof of Theorem 1.14 on the key properties of iny. We have already seen that
the semicontinuity property (1) of Theorem 1.14 follows from our construction.
To prove (2): The stabilization property of ifpg = 11 is a consequence of
infinitesimal semicontinuity becausg(a) € N. The assertion for iny follows
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from infinitesimal semicontinuity of iny because, although .1(a), for eachr >
0, is perhaps merely rational, our construction above showssthat.1(a) € N,
wheree; = 11(a) and &1 = maXe!, e!41(a)}, r > 0. It remains to get
properties (3) and (4).

Case(a). i+1(a) = oco. Then (3) and (4) are both trivial becauSg, (a) =
N¢(a) and, if o is the local blowing-up with centr® = N(a), then the strict
transformN’ = (), so that iny(@’) < inv(a), for all &’ € o~(a) (cf. 6.2(2)).

Case(b). 11+1(a) = 0. We use the notation of (4.22) and Construction 4.23.
We haveh = D4, for some b, un = d) € .7%(a), and

Swi(@) = { X=X, ..., X -t) € Ne(@) : px(Drs1) > 1} .

(Recall thatDi.1(x) is a monomialxlnl‘~an_"(t with rational exponents; if

2, # 0, thenx, = x4 for someH € & (a), and (2, = pit+1,1 (). Thus piy(Dis1)
makes sense as a rational number.) Theref§g,(a) is a union of smooth
components J, Z;, whereZ, = {x € Ny(a) : x, =0, £ €|} and the union is
over the minimal subsetsof {1,...,n—t} such thab ,_, 2, > 1; equivalently,
over the subsets such that

0< > On—1< 4, forall tel .

mel

In particular, (3) holds.

We prove (4) usingux(a) = ut+1(a). Consider a local blowing-up: W/ —
W — M; with centreZ,, for somel as above.\{/ is a neighbourhood o = 0
in which (X, ...,%,_1) extend to regular coordinates fof = N¢(a).) Suppose
a’ € oc~}a) and iny(a’) = inv(a). Thena’ € N’, whereN’ is the strict
transform ofN; N’ is a union of regular coordinate chaft$,., U, such that
o | U/ is given byx, = Yo, Xm = Yeym if m € 1\{¢}, andXm = ym if m & I.
Considerh = D8, € .7%(a). Supposea’ € U;. Thenh' € .7%4(a’), where

_ 2 2
h' := \7, d(Dtd+1) oo = (y1 Lo “Yn—t t)d, and

Q2= On, m#L, 2= Qn-1< .
mel
n—t n—t
Therefore, 1< p+1(@) < >° 2, < - O = +1(a), as required. O
m=1 m=1

Remark 6.17.Supposea € M; and in(a) = (inv(a); n+1(a)), wherer.a(a) =
0 or oo as above. Consider the extended invarian§{ay = (invx(a); J(a)),
with J(a) defined as in Remarks 1.16. Note thgt_, E"(a) C J(a). SetJ(a) :=
J@\ U, E"(@). Let S¢(a) := Sm,)e( (@). If m+1(a) = oo, then codinBE(a) = t,
and if 41(a) = 0, then codin&g =t + #;(a).
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Chapter lll. Presentation of the Hilbert-Samuel function;
desingularization in the general case

In Sect. 9, we construct a semicoherent presentation of the Hilbert-Samuel
function (Definitions 6.2, 6.4), so that resolution of singularities follows as in
Ch.ll (cf. Remarks 9.15). Our presentation at a point is formally equivalent to

a “formal presentation” in codimension zero. The standard basis of the ideal
‘:&\a C (AM a ¥ K[[x]] with respect to coordinates = (xi,...,X,) provides

a formal presentation dflx . at a (cf. [BM4, Theorem 7.3]), but does not, in
general, correspond to a regular presentation (i.e., a presentation in the sense of
6.2, which is given by regular functions as in 4.1; cf. Remark 1.19). Our regu-
lar presentation is determined by the coefficients (of an expansion with respect
to “essential variables”) of a system of generators%fa satisfying properties
which isolate the essential features of a standard basis that are preserved by
transformations of types (i), (i) and (i) ((4.4) above). Sect. 7 is purely formal:
we introduce these properties and prove they determine a presentation of the
Hilbert-Samuel function associated to an ideal in a ring of formal power series.
Semicoherence of the regular presentation of Sect. 9 depends on showing that
the formal properties are open (in the Zariski topology) on the Hilbert-Samuel
stratumSy(a) = {x : Hxx = Hx a}. A combinatorial stabilization theorem for

the diagram of initial exponents (Sect. 8) plays an important part.

7. The formal presentation

Let K[[X]] = K[[ X1, ..., Xn]]. If G = (Gy,...,Gq), where eaclG; € K[[X]], we
write (G) or (Gy, ..., Gq) for the ideal generated by tig . Let 91 € Z(n) (cf.
3.18 ff.), and letHy;: N — IN denote the functiofy (K) = #{a e N"\MN : |a| <
k}.

(7.1) Structure of the diagramLet o/, i = 1,...,s, be the vertices ot
in ascending order. (We totally ord@f" using the lexicographic ordering of
(lal, a1, ..., an), a € N".) For eachk € N, sets(k) = max{i : |a'| < k} and
put N(k) = Uisikl)(ozi +1M). We group the verticea' into blocks of given order
lol|; say thatk; < k; < -+ < ky are the orders of the blocks. Lst = s(k),
(=1,...,p. Thens; < $, < --- < sy =s andal,...,a™ are the vertices oft
with |o'| <k, for each? =1,...,p.

By a possible permutation of the variables, we can assume that the last
r indeterminatesX, _r+1,...,%n) are precisely the “essential variables” of the
monomialsX®': i.e., the variables occurring to positive power in soXe .
(“Essential variables” is used here in a weaker sense than in [BM4, Sect. 6].)
Thus 91 = N"" x 91, wheref* € Z(r) andr is as small as possible for
any permutation of the variables: (s not determined by the Hilbert-Samuel
function Hy; cf. 9.15(1).) Obviously, each' € {0} x 91*. Write X = (W, Z) =
(Wi, ...,Wh_t,Z1,...,Z). We can assume in the same way that we have 1
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ri<r,<...<rp=r sothat, for eactt = 1,...,p, the lastr, variables
zZt = (Zr—r,+1,...,Z) are the essential variables of the monomidfs, 1 <
i < s; (corresponding to the first blocks of vertices). It follows that, for all
j=1,...,r, thereexists(j), 1 <i(j) <s, suchthatiff >r—ry, theni() <s
anda'0) = 81 +(0,(j)) € "' x N, wheres! € {0} x N'¢ C N"~"¢ x N'* (and
(j) € " is the multiindex with 1 in theg'th place and O elsewhere).
Each9(k,) has the formdi(k,) = N"~"¢ x 9, whereN’ = N(k,)* C N'e,
and each; = N"~"¢ x O0f, whered! C N". (We write M = J(a' +00;) as in
Sect. 3.)

The formal properties. Let | denote an ideal irk[[X]], and let fi(X) =
fiWw,Z2) el,i =1,...,s. Let 0N € Z(n). Fix K € N, K > max|o'| — 1.
We consider the following five properties (using the notation of (7.1)):

(7.2) W) pu(f) = |a'], i =1,...,s. (u(f) denotes the order df € k[[X]].)

(2) Division property of the initial formginf;) (X) = zla\=di Dfi (0)X*/al,
whered; = |o'|. For eactk € IN: (2) If f(X) is a homogeneous polynomial, say
of degreed, then there exist unique homogeneous polynon@($) of degrees
d—d,i=0,...,s(k) (wheredy=0 andQ;(f) =0 if d < d;) such that

s(k)
f =3 Q) infi+Qof),
i=1
suppQi(f) c O;, i =1,...,s(k), and sup@o(f) N 91(k) = @. Of course, (R) is
equivalent to “(2,4) for all d € N”, where (% 4) is the condition that

Xﬁ(lnfl)(x)a ﬁEDia |B|:d_di7 [ :17"'as(k)7
X7, v E€NK), h=d,

span thek-vector spaceX)?/(X)4*! of homogeneous polynomials of degree
(3) For allf e I, there existgi(f) € k[[X]], i = 1,...,s, such thatf =
S

S2qi(f) - fi and supm (f) c O0;, for eachi.
i=1

(4) Forallj =1,...,r, let gj(X) = Dﬁifi(j)(X). Then foreaclt = 1,...,p:
(4) gi(X) € Y if r —r, <] <, and detQg’/9Z*)(0) # 0, wheredg’/0Z*
denotes the Jacobian matrix @f := (gr_r,+1,...,9) With respect toz¢ =
(Zr—rj+1,...,4), and 2*) denotes the ideal generated By 1,.... 2.

(5) Foreacty =1,....p: (50) If i > s, thenD?Zfi € (z%), forall g € Nt C
N, |8] < K. (sz denotes the formal partial derivative of ordemith respect
ot z%)

We begin with some elementary remarks on properties (1)—(3) of (7.2) and
their relationship with the Hilbert-Samuel function kff X]1/1. Let fi(X) € I,
i =1,...,s. The following can be proved by Euclidean division (cf. Theorem
3.17).
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Lemma 7.3. (Formal division algorithm). Let ke N. Assume properties (1) and
(2¢). Then for all f € K[[X]], there are unique if) € k[[X]],i =0,...,s(k),

such that
s(k)

f =3 ) +al).
i=1
suppgi(f) € O, i =1,...,s(k), and suppgo(f) N 91(k) = (. Moreover, if f €
(X)d, then each ((f) € (X)?—% (where(X)* means KX]] if £ < 0).

We recall that ifJ is an ideal ink[[X]], then the Hilbert-Samuel function of
KI[X11/3 is given byHyxy /s (6) = dimek[[X]] /(3 + (X)*Y).

Corollary 7.4. Let k € IN; assume (1) an@2). Then Hyxy /iy,..., fsg) < Hongo -

Lemma 7.5. Assume (1), (2). Then property (3) is equivalent to each of the
following:

@ 1 @ K[[XN™ =K[[X]], where K[ X]1™' := {f € K[[X]]: suppf NN =0}.

(b) Hegxyp i = Hay.

Proof. By 7.3, (3)< (a), and (b) is equivalent to the conditiong K[[X]]™ =
K[[X]] mod(X)®*1, for all ¢. Therefore, (a)= (b). To see (b)= (3), letf € |
and writef = 3" g (f)fi + go(f) according to 7.3; themp(f) € (X)**2, for all
£, s0qo(f) =0. O

Remark 7.6. Assume properties (1)—(3) of (7.2). Then the initial formsfijin
satisfy (1), (2) automatically. Sindéy;xy /1 = Hipxqpin1» it follows from (3) and
Lemma 7.5 that the ify satisfy property (3) with respect to In in particular,
the inf; generate in. (in | denotes the ideal generated byf jrfor all f € 1.)
Moreover, if properties (4), (5) are satisfied, then thk Batisfy these properties
as well.

For eachd € IV, letj{ denote the canonical projectiéf{ X]] — K[[X]] /(X)4*2.

Lemma 7.7. Assume (1). Let le N. Then property(2) is equivalent to each of
the following conditions:

(a) X2(inf)(X), Bel, |Bl<d—d,i=1...5s(K),
X7, v €NK), [ <d,

form a basis of the vector spacg K]] /(X)?*1, for each de IN.

(b) X%, pem, B <d—d,i=1...,50),
X7, 7€ Nk), v <d,

form a basis of KX]] /(X)*2, for each de N.

Moreover, suppose that(k) = N9 x 91°, where)®* C N9. (Thus, for
eachi=1,...,s(k), O = N""9 x O°, where[d? C N9.) Write X = (U,V) =
(Ug,....Un—q, V1,..., V). Then each of the conditions above is equivalent to:
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©) VA(inf)(O,V), pelf, B <d—d,i=1...,5(K),
V7, TEN, ] <d,

form a basis of V1] /(V)*, for each de IN.

Proof. Obviously, (2) < (a). Consider the square matrices with entriekin
whose columns are the elements listed in (a) or (b) written in components with
respect to the standard monomial basikfiX]] /(X)4*1. These matrices differ
by a factor which is a triangular matrix with 1's on the diagonal. Therefore, (a)
< (b). In each condition of the lemma, “form a basis of” is equivalent to “span”,
by dimension considerations.

() = (c): Letf (V) be a polynomial inv of degree< d. By (a),

s(k)
f(V) = > a(U,V)(infi)U,V)+qU,V),

i=1

where eacty; is a polynomial of degree d —d;, suppg; < O;, i =1,...,s(k),
and supmo N 91(k) = . SetU =0 to obtain (c).

(c) = (a): Letf (U, V) be a polynomial of degre€ d. We argue by induction
on the degreee of f with respect toV. Write f(U,V) = Z(‘xe@q Co(U)V e

Expressing eacV @ in terms of the basis ok[[V]]/(V)/*I*? given by (c), we
get
s(k)
f(U,V) = > G(U,V)(inf)(0,V)+cU,V),

i=1

where eaclt; (U, V) = ¢(X) is a linear combination of monomiak”, |3| <
d—d, 8 €0, andc(U, V) is a linear combination 0K7, |v| < d, & 9M(k).
Write

s(k)

f(U,V) =) a(U,V)(inf)(U.V)+c(U.V)
i=1
s(k)
+36(U,V)((infi)(O,V) — (infi)(U, V));

i=1

the result follows by induction since the last sum has degreein V. O

Remark 7.8. Assume (1) and (2). It follows by dimension considerations from
Lemma 7.7 that none of the ({)(0, V) vanish. (Therefore each has ordkr)

The Hilbert-Samuel function and the equimultiple locus.Let| denote an ideal
in K[[X]] = K[[ Xy, .., X]]- In this subsection, we will prove that ff(X) € I,
i =1,...,s, satisfy properties (1)—(5) of (7.2), then (formally) the equimultiple
locus of thef; coincides with the Hilbert-Samuel stratum Igf X1] /I .

Suppose thafi (X) € K[[X]], i =1,...,s. Setd; = u(f;), for eachi.
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Definition 7.9. For each ke N, let |§f) C K[[X]] denote the ideal generated by
all formal derivatives D'f;, |a| < min(dj,k +1),i =1,...,s.

Obviously, Ig(f) C Ig(f*)l for all k, with equality wherk + 1 > maxd;. In the
latter case, we will say thagf) is the ideal of the “formal equimultiple locus”
of thef;.

Write A = K[[X]] and letY = (Y1,...,Ys) be indeterminates. Let € N.
Everyf € Ainduces an elementif)(Y) € A[Y]]/(Y)¥*%; namely,

(XD)(Y) =f(X+Y) mod (¥)<* = DQO‘ZI(X)Y& mod (Y)<*2.

o <k

Let J¥I denote the ideal id[[ Y]] /(Y)*** generated byj£f)(Y), for allf € 1. If
| is generated by (X), i =1,...,s, then, as a-submodule ofA[[ Y]] /(Y)<*,
JXI is clearly generated by A(j%fi)(Y),i =1,...,s, |3 <k.

o ok
Definition 7.10. For each ke I, let 1§ C K[[X]] be the idealy" IJS, wherelg
i<k

denotes the local flattener of the A-module=RA[[ Y]] /(Y)¥*1)/JKI.

The chain of inclusions§ c 1£* stabilizes, of course, sinaeis Noetherian.
The “local flattener” off means the smallest ideldl in A such thaF @, A/H
is a flat &/H)-module. We will never need this idea, so we avoid using it

ok
(or showing thatH exists!) by giving an alternative explicit definition d§
(Definition 7.13 below).

Remark 7.11. Suppose thaR is a ring (commutative with 1) and thak is
a submodule of a free module®. Let E = RY/J, and letR? — E be the

canonical projection. Consider any exact sequdﬁ'?:eB—> RY—E —0; ie.,
the columndyy, . .., b, of B (regarded as g x p matrix with entries irR) form a
set of generators af. Letr € N. Then the ideaH in R generated by the minors
of B of orderr is independent of the choice gf andB: Suppose thaB’ is a
g x p’ matrix whose column®, ..., b}, generate). Then eacth =37, aj by,
where thea; € R. HenceH C H'. Likewise,H’ C H.

Letk € IN. We identify A[[Y]] /(Y)¥** with A9, whereq = #{a € N" : |a| <
k}, by means of the standard monomial baf&* : |a| < k}. Suppose that
fi(X),i =1,...,s, form a set of generators of d; = u(f;) for eachi. Consider
the presentation

(7.12) A BoA L F 0

of the A-moduleF = (A[[Y]]/(Y)**Y)/J*I, whereB is the matrix with entries
in A whose columns (as elements A Y]] /(Y)*!) are

DA (X)

(o — B)! Y mod(Y)<*t, i=1...s, |8 <k

YOGERY) = )

la|<k



266 E. Bierstone, P.D. Milman

(D*=# =0 unlessa > (3 in the usual partial ordering af"). Thus the columns
of B are indexed byi(3),1 =1,...,s, |5 <k, and the rows are indexed lay
laf <k.

By evaluationX = 0, B inducesk? 22kd. (In B(0), the columnY 2 f,)(Y)
is zero unles$3| < k — d;.) Setry = rankB(0). Clearly,Ha/ (K) =q — r.

ok
Definition 7.13. For each ke N, we can defindg as the ideal in A generated
by the minors of B of ordergr+ 1.

By Remark 7.11, this definition is independent of the presentation (7.12); in
particular, independent of the choice of generatork.dfhe ideall& defines the
“formal Hilbert-Samuel stratum” of whenk is large enough.

Theorem 7.14. (cf. [BM4, Theorem 5.3.1]). Let | be an ideal in[K]] =

K[[X1,...,X]], and let9t € Z(n). Let§(X) =fi(W,Z) €l,i =1,...,s, be el-
ements satisfying properties (1)—(5) of (7.2), whereeknax d; — 1 (di = u(f;)).
If k > maxd — 1, then § = 1§. (The inclusion § = C 1§ does not require

property (3).)

Proof. Let B denote the matrix above: The columns Bfare theY ?j%f; (Y),
i =1...,s,|8] < k. (More precisely, the components of the column vectors
are the coefficients of the monomia¥s® in these elements.B has column
index (,3) and row indexa € N", |a| < k. Consider the minor oB of order
re = rankB(0) determined by the columng®jf, (Y), wheres € O0;, | 3| < k—d,
and the rows indexed by € M, |a| < k (cf. Lemma 7.7). (Only columns such
thatd; <k are involved.)

We claim that this minor is a unit (i.e., nonzero wh¥n= 0). To see this,
consider the following block matrix with entries k[[X]]. (The columns are
indicated along the top, and the rows are labelled at the left.)

YOS (v), Y7,

a €N,

jof < k ¢ 0
a g M, . .
laf < k identity

The minor we are interested in is the determinant of the upper left ilockhe
entire matrix here is invertible by properties (1), (2) of (7.2). The upper right
block is zero, and the lower right is the identity (provided that the corresponding
rows and columns are ordered lexicographically with respeet tur ). This
establishes the claim.
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Lemma 7.15. Suppose that k< d;, wherel < i < s. Then, for ally ¢ 91,
vl <k,

ok
D'fi € Ig+(D%i: aeMN, |af <Kk).

Proof. Consider the minotp of B of orderry + 1 determined by adjoining to
the submatrixC above, the columifi(Y) and the row indexed by (where

ok
v &M |yl < k). Theny € lg. But, expandingy by cofactors along the
column determined byffi(Y), we see thatp = Df; x unit modulo the ideal
Dofi: aeN, o <Kk). O

Remark 7.16.For each? = 1,...,p, the ideal Z*) Ig(f)_l, by property (4) of
(7.2) (and the implicit function theorem).

Lemma 7.17. Forall £=1,...,p, (29 C |§Fl-

Proof. By induction on/. Assume thatZ*) c Ié"fl (vacuous assumption if
¢ = 0). It suffices to show thdd i fijy € 1 k171 if [a'0)| = Kpeq. Letk = kpaq — 1.

ok
By Lemma 7.15D"f i) € Ig+ (D) : a € 9N, |a| < k). But, by property

(5), the ideal Dfigy: a €N, |a] <k) C (Z) C1& T g™, O
o0
To complete the proof of Theorem 7.14: Clearllgf) =l =lIg=12.

We first prove that, for alk, |§f) C I§+(Z). (In particular, itk > k, —1, then
by 7.17, @) C |§P‘l C & andlé‘(f) C 1£) By induction, we can assume that
Ié‘(;)l C1E 1+ (2) C 15+ (2). Hence it is enough to show thBx*f; € 1£ +(2)

ok
if o] = k < di. Supposed; = kp1. We will show thatD*f; € Ig + (Z9): If
a € N, thena € N"" x 9N(k,) and|a| < K, so thatD*f; € (Z*), by property

(5) of (7.2). On the other hand, if & 91, thenD°f, € fs + (), by 7.15 and
the previous case.

Finally, we show that for alk, 1§ C I§ . We first remark that*| is
generated by the elementdj&fi(Y), 3 € O, |3| <k,i =1,...,s: By property
3), for anyf € I, f(X) = > 6 (X)fi (X), where supg; C O0; for eachi.
Therefore,f (X +Y) mod(Y)**? is a linear combination oveh = k[[X]] of the
alleged generators.

Consider the presentation & determined by the above set of generators

of JkI: AP B%A‘* —F — 0. Here the columns dB’ are indexed byi( ),
where g € O, |B] < k,i =1,...,s, and the rows by € N", |a| < k.

ok
By induction, it is enough to show thdg C Ig(f). SinceHa, = Hy, ¢ =
q —Han (k) =#a € 9. |a| < k}. Therefore, there are precisely columns
of B’ with index (, ) such that 5] < k —d;. It is clearly enough to show that,

for each column wher&3| > k — d;, all entries belong td)é‘(f). But these entries
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are the coefficients of °f, (X +Y) mod(Y)**; in other words, the coefficients of
f;(X+Y)mod (Y )<~ 181*1 or the formal derivatives df (X) of orders< k — |3| <

d;; the latter belong tcbs‘f(f), by definition. O

Remark 7.18. If we use the standard basis bffor the generator§ (X), then

the proof of Theorem 7.14 (becomes a little simpler and) showslgp)at: 1&

for all k (cf. [BM4, Sect. 5.3]). The weaker statement as formulated is the price
of using generators which provide a (regular) presentation of the Hilbert-Samuel
function.

Presentation of the Hilbert-Samuel function.Let | denote an ideal ik[[X]] =
K[[Xg,..., %]l let M € Z(n), and letfi(X), i = 1,...,s, denote a set of
generators of satisfying properties (1)—(5) of (7.2), wheife> max|a! |—1. (We
use the notation of (7.1).) We will show that théX) determine a codimension
0 presentation of the Hilbert-Samuel functibixy / in the sense of Definition
6.2, formally.

If k > max|a'| — 1, thenl& = 1£, by 7.14 (and 7.9); writd& = Is. By
7.17, ) C ls; Is is the “ideal of the formal Hilbert-Samuel stratui of |.

The “strict transform of by a blowing-upo with smooth centreC” makes
sense formally: Lekc denote anideal{, : ¢ € J), forsomel C {1,...,n}. Say
t = #J. Then the formal blowing-up alonig has fibre (oveX = 0) given by the
(t — 1)-dimensional projective spagé—! = “o=%(0)" of lines through 0 in{x €
K": %, =0if¢¢J}. Leté =[& : £ € J] € '~ (in homogeneous coordinates).
If & # 0, sayék = 1, theno can be defined ag by the homomorphisnw;:
KI[X]] — K[[X']], where X’ = (X{, ..., X}), given by the formal substitution

Xg:Xé,lfng orf=Kk, Xg:Xé(fg‘i'Xé), |f€€J\{k}

Letf € k[[X]]. We write o7 (f) = f oo. We define theorder 1 (f) of f along k&
as maxd : f €1d}. Thestrict transform of | by is defined, for eaclj € P'—1,
by the ideall C K[[X']] generated by’ = (X% oo, whered =y (f), for
all f el. (Xae =Xy in the substitution formula above.) We writg (f') for the
order off’.

Theorems 7.20 and 7.21 describe the transform¢ dfy admissible and
exceptional blowings-up (cf. (4.3), (4.4)). The effect of a morphism of type (ii)
is trivial, so it will follow that thef; (X) determine a codimension O presentation
of the Hilbert-Samuel function. Writél, = Hy;x) 1 for brevity. For each =
1...,s, write

(7.19) iX) = fiW.2) = > c,(W)Z7 .
~YEN'

First supposdc D Is (i.e., o is an admissible blowing-up). TheZ) C I¢.
By 7.14,d; := p(fi) = uc(fi), i =1,...,s. So by Lemma 5.1;¢(f) < d; for
eachi.

Theorem 7.20. (cf. [H3, Sect. 6, Prop. 1], [BM4, Theorem 7.3]eté € P11 =
o~1(0). Then:
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(2) H'é < H, (cf. [Ben]).

2 H|§/ = H, ifand only ifue(f') =di, i =1,...,s.

(3) Lete =[& @ £ € J], as above. In case (2), there existskn — r such
that k e J and&x # 0; say & = 1. Let Isl'g denote the ideal of the formal Hilbert-
Samuel stratum of;l Then (using the notation of (7.19) and the substitution
formula above):

(i) (2 c Iég, where X = (W', Z") = (W/,...,.Wi_,,Z{,...,Z)).

(i) Each §' (W', Z") = 3"y ¢ (W')(Z')7, where ¢, =
(Welx()—(di _M)CW oo.

(iii) The f/ satisfy properties (1)—(5) of (7.2) with respect to the id€at i,
and the diagrandl’ = 91.

Secondly, assume that< n — 2 and thatlc = (W;, W,). Let o denote the
formal blowing-up alondc. (An exceptional blowing-up (4.3)(iii) has this form.)

Theorem 7.21. Let¢ = [1,&,] € PL Then:

(1) I{ is generated by (1), and (Z') C Iég, where gg is the ideal of the
formal Hilbert-Samuel stratum og.l

(2) Bach f(W",Z') = (fi o 0)(W', Z') = 3y ¢, (W)(Z')7, where ¢, =
Coo0.

(3) The f satisfy properties (1)—(5) of (7.2) with respect to the idea¥Il;
and the diagramdt’ = 9. (In particular, H, = H, and u(f') =di, i =1,...,s.)

The following assertions will be used in our proofs of Theorems 7.20 and
7.21.

Lemma 7.22. Let P denote the idedlX, : ¢ € J), for some JC {1,...,n}.
Suppose thatfX) € |,i =1,...,s, satisfy properties (1)—(3) of (7.2) and that
pe(fi) =di == p(f),i =1,...,s.1ff € l and d = pp(f), thenup (qi (f)) > d—d;,
i =1,...,s (where the (f) are the quotients in the division formula of property

(3)).

Proof. For eachi, sinceup(fi) = di, infi depends on the variable§, ¢ € J,
alone. Letf €| (f #0) and letd = up(f). Sete = pp(Gi(f)), i =1,...,s, and
e=min(g +d) < co. Let inpg, g € K[[X]], denote the initial form ofg as a
formal expansion inX,, ¢ € J, with coefficients ink[[X, : ¢ ¢ J]]. We claim
that

(7.23) Y ineqi(f)-inefi # 0,

(i +d;=e}

Of course, for each, suppinqi(f) € O; (supp of inq;(f) as a power series
in X) and irpf; = infj+ terms of higher order iXX. Suppose that (7.23) is not
true. Write each term in the left-hand side as a sum of its homogeneous parts
with respect toX; thus > (g ot J(infi +hi g+1+---) =0, where the second
subscript in each case indicates degree of homogeneity andqggltclyt 0. If
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e =min(e +d), then 3 ¢y -infi = 0. Therefore allg o = 0 in this

{i:e/+dj=¢'}
sum, by property (2); a contradiction. It follows from (7.23) tltht= e and
thereforeg > d — d;, for all i. O
Corollary 7.24. (cf. [BM4, Lemma 7.1]). Suppose thafX) € I,i =1,...,s,

satisfy properties (1)—(3) of (7.2). Consider the strict transform of | by the formal
blowing-up alongd = (X, : ¢ € J), where JC {1,...,n}, as above. lfy.(fi) =

di :=u(fi),i=1,...,s, then, forallg € ¢~(0) =", the ideal | is generated

by f' = (X, %fioo,i=1...,s.

Lemma 7.25. (cf. [BM4, Lemma 7.5]). LetilfU,V) € k[[U,V]],i =1,...,s,
where U = (Ug,...,Up), V. = (Vq,...,Vy). Let & C K[[U,V]] denote the
ideal generated by thej{U,V), and 3 C k[[U,V]] the ideal generated by
the h(0,V). Then H, < Hy,.

Proof. For each\ € k, let J(\) C k[[U,V]] denote the ideal generated by
the hy(AU, V). If X £ 0, then U,V) — (AU,V) induces an automorphism of
K[[U,V]] taking J(1) ontoJ()); in particular,H;(\ = Hjyq). ThereforeH; () <
Hj(0), by semicontinuity of the Hilbert-Samuel function (cf. Remarks 9.1). But
J(l) = andJ(O) =Jo. (I

Lemma 7.26. Let h(U,V) € K[[U,V]],i = 1,...,s, where U= (U, U,),
V = (Vi,...,Vy). Let J denote the ideal generated by théUh V), and let J
denote the ideal generated by the(ll:lb Us(c + U2)7V), where c € k. Then
Hj, > Hj.

Proof. If A € k, let J()\) be the ideal generated by tma(Ul,)\Uz +(1 -
AUz (c + Uz),V). ThenJ(0) = J’, J(1) = J. If X £ 0, then the substitution
(U1,Uz,V) — (U, AUz + (1 — A\)Us(c + Uy),V) induces an automorphism of
K[[U,V]] taking J = J(1) to J()). Therefore,Hy) = Hy, for all A # 0. By
semicontinuity,H;» = Hy) > Hj. O

Proof of Theorem 7.20We can assume that/ = (T,Y), Y = (Yi,...,Yq),
T =(Ty,...,Th_g—r) and thatlc is the ideal ¥,Z). We write

fi(TaYaZ) = Zci'y(T7Y)Z’Y, i=1,...7S.
YEN'

For eachi and~, let ¢, 4|, denote the homogeneous part ®f(T,Y) of
orderd; — |v|. For eachi, sincepu (f) = di = pu(fi), if [y| <d thenci, 4|4 =
Ci~.d —|v/(Y) depends only orY, and

(inf)(T.Y,Z2) = > Giyg-(V)Z7.
[vI<di
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Let J =inl. By Remark 7.6J is the ideal generated by thefinLetn € k9,
¢ €k', and letd,, ) C K[[X]] = K[[T,Y, Z]] denote the ideal generated by the

(inf)T,n+Y,C+2) = > Cog_+Y)C+2)T.
[v[<d;

If XA €k, letl, be the ideal generated by the fij(T, \n+Y ,A(+2Z). If A\#0,
then T,Y,Z) — (AT, \Y, AZ) induces an automorphism &f[X]] taking I to
Jim.¢); therefore (as in 7.25K; = H,; > Hi, = H,, . Then the following are
equivalent:

(7.27) (1) (infi)(T,Y, ¢ +Z) has order d;, for somei;

(2) Hyp oy <Hs

(3)¢#0.

Indeed, the ity satisfy (7.2) with respect to in by Remark 7.6, so that
(1) & (2) by Theorem 7.14. (2)= (3) sinceJpo = J, and (3)= (1) by
property (4) of (7.2).

Consideré € 0~%(0) =Pt~ (wheret = q +r). By Corollary 7.24, for any
choice of homomorphisra;: K[X]] — K[[X']] as above, the strict transform
I” =1; of | is generated by thg’ = (X %fi o o, and the strict transform
J" =J; of J is generated by the (f)’. Write £ = [1, (] = [n1, ..., 7q: C1s - -+ Gr]
in homogeneous coordinates.

Casel. First suppose thaty # O for somek; sayn; = 1. Write X’ =
S,U,V)=(S,...,S-g=r U1,...,Uqg, V1,...,V,), so thatag can be defined
by the formal substitution

T = 87 Yl = Ul» Yk = U1(77k+Uk)» k:27"‘,q7 Z = Ul(<+v)
Write 17 = (12, ..., 1q) andU = (Uz,...,Uq). For eachi =1,...,s, we have

(7.28) £/(S,U;,U,V) :

U, o, (S, U1, Us(iT+U), Us(¢ + V)

> U @ Me (S, U, Us@+0)) (¢ +V)7
~yEN'

Y Gra @A+ U)C+HV)T = §(0,0,U,V).
lvI<d;

By (7.29) and Lemma 7.25H,, < Hj,. Consider the isomorphism:
K[[X]] — Kk[[X']] induced by the substitutionT = S, Y; = U, Yx =
QA+U)m +Uk) —mk, k =2,...,9,andZ = (1 +Uy)(C+V) — (. Thend
takesJi,,¢) to J’. ThereforeH,» < Hyr =H,, , <H; =H,.

Let us write (1)—(5) to mean (1)—(5) of (7.2) for th&’ (with respect td’,
2N’ = 91). We obtain the conclusion of the theorem in Case | from the assertions:

(@) If pe(f)=di, i =1,...,s (i.e,, () holds), then properties {1— (5') all
hold; in particularH,, = H, by Lemma 7.5.

(b) If pe(f) < di, for somei, thenH,, < H,.

For each , if u¢(f’) = d;, then by (7.28), the summandsfg(0, 0, V) indexed
by ~ with |y| < d; contribute zero, so that

(7.29) (inf)(S,U,V)
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f(0,0V) = Y 6o *+V) = Y G0V

|vI=di |v[=di

(each ¢y = a constant); it follows thaf;’(0,0,V) = (inf/) (0,0,V) =
(inf;)(0,0,V). Therefore, ifue(f’) = di for all i (i.e., () holds), then{ = 0
(by (7.27)). Moreover, for each=1,...,p, if pe(f’) =di,i =1,...,s, then
(2,) follows from (2,) using 7.7.

For eachj = 1,...,r, DAi(fig) 0 0) = U1 (DA% 0 0 = UMy,

where g/ = Ul_lgj o o (the strict transform ofg; = D fig)); thus g/ =

D (figyoo /U, 1™ = DAt For eactj andt, ag /oV, = U; *a(g; 00) [0V, =

(09 /0Zg) o 0. If pe(f') =di, i =1,...,5, then (4) follows easily from (4);
likewise, (3) follows from ().

Assume that (9 holds. We prove (3: Let g € I’. We consider 3 cases:

(i) First supposey = ', wheref € 1; say . (f) =d, so thatf’ =f o o/ug.
write f =3 ¢ (f)fi according to property (3). Then, by 7.28, (g (f)) > d—d,
for eachi; i.e., g (f)oo is divisible byu; ™%, andf’ = > U; @4 (g (f)oo) -F/,
as required.

(i) If g =UZf’, wheref €1, then the result follows from (i).

(iii) Consider anyg € I’. By Lemma 7.3 and case (ii), it suffices to show that
for anyk € I, there exisf € | ande € IN such thaty — Uff’ € (X")k. Write
g = >_af/ according to Corollary 7.24. Le denote the Taylor polynomial
of degreek of &, i =1,...,s, and seth = 3 Af/, so thatg — h € (X")*. If
d = maxd;, thenUf*9h = STUSA - Uld_di : Uldi f/; clearly, eacHJld_di ~USA
can be written a®; o o, so thatUf*@h =f o o, wheref =3 bif; € I . Therefore,

f oo =U[*ef/, for somee € IV, andh = UFf/, as required.

We have thus proved assertion (a) above. To prove (b): First suppose that
pe(f’) < di, for somei = 1,...,s (i.e., for somea' among the first block of
vertices of91, whered; = k;). For suchi, | expf/| < ki; sinceH;» < H; = Hg,
it follows thatH,, < Hy.

In general, suppose thak(fi) = di, i = 1,...,s and pe(fiy) < dig = Keaa,
wheres, < ig < sp+1. Then supfi) N {a : [af < keq} is nonempty and is
disjoint from 91(k,) by (5;). It follows from (2{%) and dimension considerations
(cf. Corollary 7.4) thaH,, < Hy. This completes Theorem 7.20 in Case |I.

Casell. Suppose that =0,k =1,...,0. Then¢; # 0, forsomg =1,...,r;
say(1 = 1, so thats; can be defined by the formal substitution

T=S, Y=WU, Z1=Vi, Z =Vi(G+V),]j=2....r.

Write ¢ = (C2,..-,¢) andV = (Vo,...,V;). Foreach =1,...,s, we have

#(S,U,V,V) = 3 vy @M (s, viu)(E+ V)T,

YEN

Z Ci'Y:di *"Y‘(U )(Z+ \7):; = fi/(07 U 707\7)

[v]<d;

(7.30) (inf)(S,U,V)
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(wherev denotes 1>, ...,v)). By (7.30) and 7.25H,, < Hj;.,. Consider the
isomorphism#: k[[X]] — Kk[[X’]] induced by the substitutiom = S, Y =
(A+VU, Z3 = Vq, andz; = (1+V)(G+V) =G, ] =2,...,r. Thend takes each
(inf)(T,Y,¢+Z) to (14+Vy)4 (inf,)'(S, U, V), hence takes the idedp ) to J'. By
(7.27), (infi)’(S,U, V) has order< d;, for somei, andH,, , < H;. Therefore,
pe(f’) < di, for somei (by (7.30)), andH;» < Hy» = Hyq ) < Hs =H,. This
completes the proof of 7.20. O

Proof of Theorem 7.21For eachi = 1,...,s, we write

fiw.z) = ) a,(W)z”
YENT

as before, so that (as in the proof of Theorem 7.20)

(inf)W,Z) = D Cyg—y/(W)Z7 .
[v[<dj
Write X" = (W', Z") = (W, ..., Wy_,Z{,...,Z), so thato: K[[X]] — K[[X']]
can be defined by the formal substitution

Wl:W]{a W2:W1{(52+W2/)7 Wk:Wklvkzsa"'vn_ra zZ=127.

By Remark 7.8, for each, (inf;)(0,2) has ordewd;; in particular, there exists
such thaty| = d; andci, g —||(W) = ¢i,(0) # 0. Thereforeu, (f) = 0 for all i,
andl/ is generated by the

FOW,ZY) = > i (W, W (& + Ws), Wa, .. )(Z')
YEN'

Let us write (1) — (5') to mean properties (1)—(5) of (7.2) for tiié (with
respect td ' = I/, 9’ = 9). By the preceding remarkgy(f;') = d for all i; i.e.,
(1) holds. Since (iff;’)(0,Z) = (inf;)(0, Z) for eachi, (2') holds by Lemma 7.7,
and (4), (%) follow trivially from (4), (5). By Lemma 7.26H,, > H,. But
H,, < Hy = Hy, by Corollary 7.4. ThereforeH,» = Hy and property (3
follows from Lemma 7.5. O

8. The stabilization theorem

We say tha®l € & (n) is amonotonediagram if

(a1,...,an) €9 = (a1,..., 0,...,0+¢j,...,on) €N
i’th i’th
place place

whenevei < j (cf. [H3]). Supposét is monotone. Let, ..., o° be the vertices
of M, in ascending order. Set; =o' +0;,1 =1,...,s, andT = N"\91, as in
Sect. 3.
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SupposeA is a commutative ring with identity andti(Y) € A[Y] =
AlY1,...,Yn] is a homogeneous polynomial of degrde= |&'|, i = 1,...,s.
For each? € N, set

7 _ Yﬁfﬁ(Y), geli, |fl=¢—-d, i=1...s,
s = {00 e TS |

Of course,’(¢) is a basis of the free moduler}*/(Y)*** of homogeneous
polynomials overA of degreel if and only if &(¢) spans this space.

Theorem 8.1. There exists 1) € N such that, for any commutative ring A with
identity and any set of homogeneoug¥) € A[Y] of degree d i =1,...,s, if

k > k(") and (k) spans(Y)*/(Y)<*2, then (¢) spans(Y)*/(Y)**, for all

¢ > K.

Theorem 8.1 will be used in this article only in the case thas a field.

For eachr = 0,...,n — 1, let pr: N — N"' denote the projec-
tion pr(aa,...,an) = (ar+1,...,an). Since 91 is monotone,F, = (N x
pr..\pr, 9t C N"" is a finite set, for eaclh = 0,...,n — 1. ® x pr,9
meansi.) We havel = U/, '(I" x Fy). Clearly, Oo\Fo = Ul (1" x Fy) is
unbounded in the direction of the first coordinate (unless it is empty).

SinceN is monotonedt N ({0} x N"~") is monotoner =0,...,n — 1.

Lemma 8.2. Let1 <r <n. For eachi:
(1) If A is unbounded in they -direction, thena! = (0,...,0,al,...,al).
(2) If r > 2 and 4; is unbounded in the-direction, then4; is unbounded
in the a1-direction.

Proof. (1) Otherwise, if3 = (0,...,0,a} +---+al,al,,,...,a}), theng € N
andf < o, so thats + N" boundsA; C o +N" in the o, -direction.

(2)By (1),a! =(0,...,0,al,...,al). Itis enough to show that, for each ¢
N, if (81,0,...,0,ak,...,0l) € M A, then Q...,0,al +B1,al,y,...,al) ¢
Aj. Now, if 8= (81,0,...,0,al,...,al) € M A, thens € (o' +T")\4;, so
that 3 = ol +~, for somej < i, v € N". Thusa) = (e4,0,...,0,ad,...,ah),
where 0< o} < 1 andd), < o, £ =r,...,n. Henceldl| < |d'|, since
otherwisea! < o (contrary to the ordering of the vertices). It follows that
O,...,0,c) +ak,al,,, ..., ah) € Nis of the formak +6, for somek < i. Then
O,...,0,al + B, 4, ..., al) € Ay, sO¢ A;. O

Definition 8.3. Set K(®1) =1+ maXa: « € Fgor a € 4, for all i such that
4 is bounded. (Takemax( := 0.) Set K91) = [ max 1k’(‘n N ({0} x N N)).
<r<n-—

Remarks 8.4Suppose thak > k’(). Then:

(1) If 5 €O (where 1<i <s) and|s| =k — d;, thend; is unbounded, so
that3 +(1,0,...,0) € O; (by Lemma 8.2 (2)).

(2) If v € Op and|y| =k, then~y € Op\Fo, so thaty + (1,0, ...,0) € Op.
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It follows that Y;°(k) C &°(k + 1).
Proof of Theorem 8.1For eachr =0,....n — 1, letY" = (Yr41,..., Yy) and let

P(r,0) = {P(O,Y)=PQ,....0,Yr1,...,Ya): P e 2(0)}
_JYPHI(O,Y"), Bedn{0}xN""), |B]=f—d, i=1,...,5,
- Y, v EDoN {0} x N7, |y =¢ '

In particular, 2°(0, /) = 2°(¢). Clearly, if »°(k) spans the spacerf/(Y)<*!
of homogeneous polynomials of degrken (Y,...,Yy), then (r k) spans
the space X")¥/(Y")k*? of homogeneous polynomials of degrkein Y' =
(Yr+1,--.,Yn), r=0,...,n—1.

Takek > k(91) and assume tha#’(k) spans Y )*/(Y)***. It suffices to prove
that 22(k + 1) spans Y )k*1/(Y)k*2,

Lemma 8.5. If P(Y") is homogeneous of degree-k and divisible by Y., then
there exists QY) = Q(Y1,...,Yy) € Span”’(k + 1) such that @0, Y") = P(Y").

Proof. P(Y")/Y;+1 € Span’(r, k), by the assumption tha#’(k) spans Y)¥/
(Y)*L. Therefore,P(Y") € Span2’(r,k + 1), by Remarks 8.4 (applied & N
({0} x ¥"~1)). In other words, there existQ(Y) € Spanz’(k + 1) such that
Q(O,Y") =P(Y"). O

To complete the theorem: Le®(Y) be homogeneous of degrde+ 1.
Write P = Py(Yy,...,Yn) + Pa(Ya,...,Ys) +--- + Py(Y,), where, for eactr,
Pr(Yr,...,Yn) = P@O,...,0,Yr,...,Yn) — P(O,...,0,Ys1,..., Yn); thusP; is
divisible by Y;. Therefore it suffices to prove that, for each if P(Y") =
P(Y;+1,--.,Yn) is @a homogeneous polynomial of degtee 1, divisible byY; .,
thenP € Spanr’(k + 1).

By Lemma 8.5, this is true when = 0. In general, by Lemma 8.5, there
existsQ(Y) € Spanr’(k +1) such thaP(Y") =Q(0,Y"). ThusP(Y") = Q(Y)+
QO,Y") —Q(Y), butQ(0,Y") — Q(Y) = Z;zl Qq(Yq, - -, Yn), where eaclhQy
is divisible by Yy, so the result follows by induction an O

9. Semicoherent presentation of the Hilbert-Samuel function

Assume that # is any of the categories of local-ringed spaces dyen (0.2)
(1), (2). LetM denote a manifold in-2, and letX denote a closed subspace of
M.

Remarks 9.1Let a € |X]| and letl = %(\a C K[X]], X = (Xg,...,X%Xn), where

(AMa is identified withk[[X]] via the Taylor homomorphism associated to local
coordinates (Definition 3.4). Definition 7.13 can be applied using a presentation

o_k
(7.12) induced by generators 0% ; thus, for eaclk € I, we get an idealZ g ,
o_k
in @y a such that supPim.a/-7s, = {X € [X]: Hxx(k) =Hx a(k)} (as a germ
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ata). If we formulate 7.13 in a more general way, using arbitrary nanke get

a sheaf of ideal§7|;(r) C Oy of finite type such that suppu /.O7I;(r) ={x e
IX|: Hxx(k) > q—r}, whereq = #{a € N" : |a| < k}; henceHx .(k) is
Zariski-semicontinuous for eadh

The moduleg= of (7.12) itself admits an invariant definition as the completion
of the ring of germs of sections of the bundlelofets onM at a, modulo the
ideal generated by germs of sections induced by element% gf(as any a-
module).

Theorem 9.2 (cf. [Ben]). Suppose that X is an object ir#. Then the Hilbert-
Samuel function K. is Zariski-semicontinuous.

Proof. Let H denote any value of the Hilbert-Samuel function. By Remarks
9.1, for eachk € I, {x € |X]| : Hxx(k) > H(k)} is Zariski-closed in/X|. (It

is clear thatX need not be globally embedded.) Sin¢ds locally Noetherian,

{x € |X|, Hx x > H} is Zariski-closed inX|. By Lemma 9.3Hx . locally takes
only finitely many values. O

Let U be aregular chart iM with coordinatesx;, . . ., X,). Using the Taylor
homomorphismTa: @ma — K[[X]] = K[ Xi,...,X]], we associate to each
a € U, the diagran®t, = ‘n(.iﬁ) € Z(n). We totally orderZ (n) as follows:
To eachdt € & (n), associate the sequenc@®t) obtained by listing the vertices
of 91 in ascending order and completing the list to an infinite sequence by using
oo for all the remaining terms. 1911, M, € & (n), we saydl; < N, provided
v(M1) < v(92) with respect to the lexicographic ordering of such sequences.
Then every decreasing sequence4r(n) is finite.

Lemma 9.3. (1) Foreachac U, {x e U : My < N, } is Zariski-open in U.
(2) Locally, My has only finitely many values.

Proof. (1) For eacha € N", we defineNa(a) = dimk[[X]]/((X? : 8> «)
+§;a) ac U, where K? : 8 > a) is the ideal generated by the monomials
X?, 3 > a. ThenN.(«) is Zariski-semicontinuous ol , for each fixeda (by
an argument parallel to that of Remarks 9.1 for semicontinuitHgk (k) =
dimik[[XT]/((X)* + . ).

If 91 € Z(n) anda € N", setNy (o) 1= #{y € N"\91: ~ < «}. It is easy
to see that iy, 91 € Z(n) andag is the largest vertex dily, thend < Ny if
and only if eitherNg (8) < Ny, (8) for all 3 < ag, or there existsy < ap such
that Ny (o) < Ny, () and Ny (8) < Ny, () for all 3 < a. If a € U, then, for
all @ € N", Na(a) = Ny, («) (cf. Corollary 3.20). Therefore, (1) follows from
Zariski-semicontinuity oiN.(«) for each fixeda. (“Locally Noetherian” has not
been used to prove (1).)

(2) Leta € U and letV be a neighbourhood af such that any decreasing
sequence of closed subspacedJobtabilizes onV. Suppose there are infinitely
many values ofly, x € V; then there is an infinite sequence of valgés <



Canonical desingularization in characteristic zero 277

N, < - -- (since every decreasing sequencexin) is finite). Hence{x : 91« >

Mt =1,2,..., is a decreasing sequence of Zariski-closed subsdis which
are distinct ovelV . But this sequence stabilizes ® by local Noetherianness;
a contradiction. O

Theorem 9.4. Let a€ X and let91 € & (n). Suppose we are given:

(1) A germ N= N, (a) at a of a regular submanifold of M of codimension r,
and regular functionsuy, . .., wn—r € @m 2 Which restrict to a coordinate system
onN.

(2) i(W,2) = Z%Nr C,(W)Z7 € K[[W,Z]],i = 1,...,s, where W=
(Wi, ..., Wh—r), Z = (Z1,...,Z) and each W. Z € My , (the maximal ideal of
.a).

(We are using the notation of (7.1), (7 2). ) Assume that:

(i) Each W is induced byw; and 7N a = (Z) (so we |dent|fy(4\,. a =
KIW, Z])). R

(i) Each § € | = FKa C K[[W,Z]], and every coefficient; W) =
D/fi(W,0) is the Taylor expansion of a regular function,@v) € ¢ a (cf. Def-
inition 3.4).

(iii) The f, satisfy properties (1)—(5) of (7.2) (where X max|a! | — 1).

Let Zi(a) = {(ciy(w), d — |7]) © |y < d, i = 1,...,s}. Then
(Nr(a), “41(a), #1(a) = 0) is a codimension r presentation ofkH at a (cf. Defi-
nition 6.2).

Our main aim in this section is to construct semicoherent data satisfying the
hypotheses of Theorem 9.4. (See Theorem 9.6 below.) But we first show how
Theorem 9.4 follows from the results in Sect. 7: We use the notation and the
hypotheses of Theorem 9.4.

Remarks 9.5(1) Suppos&k > maxd; — 1. Thenlk =D o <d, i =

., S) (Definition 7.9) is generated &, . .., Z, and theDﬂcw, 18] < di —|v],
|v| < di. Thus k[[W,Z]]/Ié‘m identifies with the completion o'\ a/ 75 (),
where. %@ C (\ a is the ideal generated by thi#’lc, /0w, || < & — |l
[v| < di, so that suppin,a/ F5 @ = {X € IN| 1 pux(Ciy) > di =[], [7] <
di,izl,...,S}. _

(2) For eachk € N, set.7, = Z]<k °7JSa By Theorem 7.14, ifk >
maxd — 1, then. 7, = F&Y say 7, = Fsa. suppu.a/Z.a is the germ
S = S (a) of {x € [X]: Hx,X = Hx a} It follows from Theorem 7.14 that
Sc N =N (a).

Proof of Theorem 9.4.eto: M’ — M be a local blowing-up (a&) with smooth
centreC, and letX’,N’ be the strict transforms oK, N (respectively). Let
a’ €o @) If f € Oy ., then the “strict transform df”, f’ = y;3f o o (ata’),
whered =y (f) andlc = 7c a C (M a = K[[W,Z]], is defined m(M/ a (up
to an invertible factor).
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Consider the cas€ C S C N; i.e, Ic D ls, wherelg = Za We
can assumew = (t,y), ¥ = (Y1,-.-,¥qh t = (t1,...,th—q—r), Where C is
{y = 0} € N. If a’ € N/, then there existwy,...,w,_, € On/ o and
W, Wi, 2,2 € @/,a/ satisfying the analogues of (1) and (i) in
9.4, such that?: K[[T,Y,Z]l = Cwa — Curaw = KIT',Y',Z']] (where
W’ = (T’,Y’)) is given by a formal substitution as in Case | of the proof
of 7.20), andf/(W',Z2") = >° ¢, (W)(Z')", i = 1,...,s, where each
G, = Ye;édi_”‘)ci,y o o, of course,s induces a homomorphismiy o — /o
and eaclt], = ye}(cdi "”’cw o o makes sense as an element@f , .

Theorem 7.20 can be translated as follows: &€ o—%(a). Then:

(1) Hx o < Hx.a.

(2) The following are equivalent: (iHx/ or = Hx a; (i) par(f) = di, i =
1,...,s; (i) @’ e N" andpar(cf)) > di — |y, [y <di,i=1,...,s.

(3) If Hxs o = Hyx a, then thef;/ satisfy properties (1)—(5) of (7.2) with respect
tol’ = .7/;/@/ and 9’ = 9. (In particular,S" C N’, whereS' = §, ,(a’).)

Now assume < n—2 and consider the case th@atis given byw; = w, = 0.
Clearly, N’ = c7}(N). Leta’ € o~(a). Then there existy, ..., wh_, € Oyrar
andW/,...,W,_,.Z{,...,Z/ € @/ﬁ/ satisfying the analogues of (1) and (i) in
9.4, such that,: k[[W, Z]] — K[[W’,Z']] is given by a substitution as in the
proof of 7.21, and{(W',Z") = > ¢ ,(W)(Z')?, i = 1,....,s, where each
ci’7 =i, 0 0. Theorem 7.21 means:

(1) X' =o7Y(X).

(2) Thef/ satisfy properties (1)—(5) of (7.2) with respect to the ideaF
*Z/,a/ and9t’ = N. (In particular,Hy/ o/ = Hx a.)

Since the effect or(Nr @), “(a), £1(a) = (Z)) of a transformation of type (ii)
(4.4) is trivial, we see that Theorem 9.4 is a consequence of Theorems 7.14, 7.20
and 7.21. O

Let U be a regular chart iM with coordinatesXj, ..., xy). Letag € U. We
identify o, With K[[ Xy, ..., X]] using the Taylor homomorphism (Definition
3.4), and definedt = 9(% 4,). By a coordinate change, we can assufhés
monotone (Sect. 8) and satisfies the conditions of (7.1). We get a semicoherent
presentation of thélx ., from the following. (We use the notation of (7.1).)

Theorem 9.6. There is a covering of M by regular coordinate charts U, each of
which satisfies the following assertions. Lgt@aU and let91 = ‘ﬂ(.@,ao) (with
respect to the coordinates=x (xq, . . ., X»)). Assume thadt is monotone. Then we
can construct:

(1) a Zariski-open neighbourhood V of & U;

(2) a regular submanifold N of V containing,adefined by r elements of
(U)y whose gradients are linearly independent on N;

(3) formal power series f= ZweNr CZ7i=1...,8,inZ=(Z,...,Z)
whose coefficients.¢are regular functions on N induced by elementg’dt) )y ;
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such that: (i)w = (ws, ..., wn_r) restricts to a regular coordinate system on
N, where x= (w,2) = (w1, . .., Wn—r, 21, .- -, Z)-

(i) Let S5y = {a € IN| : pa(Ciy) > |a'|—|v|, forall |y| < |&'|,i =1,...,s}.
Then, for all ac Sy), the hypotheses of 9.4 are satisfied hya) := germ of N
at a, and f(W,Z) = > ci,a(W)Z7, i = 1,...,s, where each;¢ (W) is the
Taylor expansion at a ofi¢ = ¢, (w). Moreover, H 5 < Hx o, foralla € Vv,
and &) = Sy, , V.

Proof. We will obtain the data required by induction with respect to the blocks
of vertices of of given order. (See (7.1).) To begin, we can assume there are
f0e @), i =1,...,s, such that thg® generate’k onU and expf’, (w,2) =

ol (IfFf € @(U) anda € U, write fa(w, z) € k[[w, z]] for the Taylor expansion

of f ata; cf. Remark 3.7). We can assurkix . has only finitely many values
Hxa, acU.

For each? = 1,...,p, write w’ = (wy,...,wn—r,2,...,2z_;,) andy* =
(Zr—rp41, ---,Zi—r,_,), SO thatw’~! = (w' y‘) (whererp = 0 and u® =
(w,z) = X). Let Zy,...,Z be indeterminates. For afl= 1,...,p, write Z* =
(Zi—rpp1,---,Z) and YE = (Z 41, ..., Z—r,_,), SO thatZ? = (Y, Z2¢71)
(zt=Y"h.

LetK € N, K > maxd, — 1. PutNp = U. For each/ = 1,....p, we will
construct:

(9.7) (L) a Zariski-open neighbourhood, of ay in U;

(2¢) a regular submanifoldN, of V, (of codimensiornr,) defined byr, ele-
ments of”(U)y, whose gradients are linearly independentNn such thatw*
restricts to a regular coordinate systemNyn

(3¢) expansions‘(w’, Z%) = 37 v, ¢/ (w)(Z"), i = 1,...,s, where the
¢/, (w’) = (Dg,fi)(w",0) are regular functions oN* induced by elements of
“U)v,;

such that the following properties (9.8),Ja(d,) are satisfied:

(9.8) (@) expf’y, =o', i = 1,...,s, wheref’, (w’,Z2°) =Y cf, , (w)Z*)

€ k[[w*,Z*]1 and ¢/, ,(w") is the Taylor expansion dff, ata € N.
(b) Forallj =r —r,+1,...,r —ryy, let h'(w'~?) = DA (w2, 0).
(Recall thatw*~* = (w’,y’). EachB, € {0} x I'¢; D¥ is a partial derivative
with respect to the regular variablgé and the formal variablegZ‘~1.) Then, in
Ve, Ny C Ng_y is defined byhf(w’,y*) = 0 for all j, and detph‘/dy‘)(a) # O
for all a € Ny, whereh® = (h{_, .;,....h/_, ).
Remark 9.9. For eacha € N, the formal implicit function theorem gives
hi(w’,y) = Ug(w’,y")(y" — ys(w")), where yi(w’) € k[[w]]"* -t and
UZ(w,y") is an invertible matrix with entries ik[[w’, y*]]. It follows from
(b), k = 1,...,¢, that, for eacha € N, there is an identification of% a

with k[[w’,Z4]] induced by the identificationy » = k[[w'L,z¢Y] =
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k[[w?,y*, Z*1]] (given by induction) and the formal coordinate changé =
y*—y&(w"). Via this identification, %,  C k[[w*, Z*]] is the ideal Z*) generated
by Zr—l'g"'l? v 7Zr-

(c)) Leta € No. Fori = 1,...,s, f%(w",Z%) € I, wherel; = %(\a C

k[[w?,Z]]. Moreover, for i L...,s, w5 2% = £ (v yi(w?) +
Yz, | ’
Remark 9.10. Let gf(w*,Z2%) = Dif{,(w*,Z), j =r —ry+1,...,r. (Each
D% is a derivative with respect t@*.) It follows from (b) and (), k =
1,...,¢, that eachy! ,(w",Z%) € (Z*) and detfg;/5Z)(0,0) # 0, whereg" =
(gre—r[f-]_a e 7gr£)! ac NE'

(dp) Leta € N, If i > s, B € 91 and|8] < K, thenDJ,f%, (w', 2%) € (29).

To construct data as above: Suppose, by induction, that forkeach . . ., /—
1, we have (9.7) (@)—(3) satisfying (9.8) (R)—(dk).

Defineh? as in () above. By () and (&), k < ¢, and the definition of thg,
in (7.1), detph’/ay*)(ag) # 0. Therefore, there is a Zariski-open neighbourhood
V/ of ag in V,_1, such that{h’(w’,y’) = 0} defines a regular submanifold
N; € Ne—1 NV, of codimensionr, in V/ (the hf are induced by elements of
¢(U)y; as in Lemma 3.5), and detg’/oy“)(a) # 0, for alla € N,. Thus we
have got (b).

For eacha € Ny, we defineyi(w’) as in Remark 9.9. If (w’~1,z1) ¢
Cha = K[[w'1, %1, then we writef (w’,Z%) to denotef after the iden-
tification of iy a with k[[w’,Z*]] via the formal change of variable¥’ =
vt — yi(wh); ie., f(w,Z%) meansf (w’,ys(w’) + Y*,Z¢71). We clearly still
have expff;ol(wf,ze) =a',i =1,...,s (because of the lexicographic ordering
of multiindices).

Remark 9.11.Supposd (w'~1, Z71) = 3" v 1 £, (w*1)(Z71)7, where each

f,(w’~1) is a regular function olN*~1. Leta € N*. Considerfy(w*~1,Z*"1) €
K[[w1,Z*Y]). Let B € N"¢; say B = (6, ), wherey € N'¢-1, Then

{70y — £\ 74—
Dgefa(w VAR Dgi,zéfl)fa(w Yz 1)|ye=yg(wz)+ye .

Thus Dy, fa(w’,0) = Dgﬂazg_l)fa (w,yt(w"),0) is the formal Taylor expansion

ata of the regular function oM, given by the restriction oIDf,wa(w”,y‘f) to Ny.

Lemma 9.12. Let f(w’, Z*) € 2o = K[[w*, Z*]]. Then we can write f uniquely
as
Sy
f(w',2%) = ZQi (wz7ze)ffa;1(wé»zé) +r(w’,Z%) modZ)**t,
i=1

where
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g’z = Y cp@)zh’, i=1...s,
penf
IBI<K—d
rw,z = Y o)z
yenTe\ ot
[vI<K
Moreover, if f(w’,Z%) = 3=, f,(w)(Z°)7, where each.f is induced by an
element o7 (U )Vé’ then there is a Zariski-open neighbourhooddf & in V/ in
which each g or c, is the restriction to M of an element of” (U )y, .

Proof. Let A(w’, Z%) denote the square matrix with entrieskfiw’, Z*]] whose
columns are the partial derivatives of orderK with respect taz* of

@Rt zY,  pedl, 1Bl<K—d, i=1...5,

(9.13)
@y, yENON, |y <K.

The rows ofA are indexed byy € N'¢, |y| < K, and the columns are indexed
by (i, 8) and~ as in (9.13). To specifA precisely, let us say that the rows are
listed by~ € 91 in ascending order followed by ¢ M¢ in ascending order, and
that the columns are listed first by, (3) in ascending order ofi + 3, followed
by ~ in ascending order.

Since expf,t = o' for all i, it follows thatA(0,0) is lower triangular with
1's on the diagonal. In particular, d&g0, 0) # 0. ThereforeA(w*, 0) is invertible.

Givenf € k[[w’,Z]], let F(w) be the (column) vector with entries
(DJ,f)w*,0),v € N', |y| < K, ordered in the same way as the rowsfofThen
there is a unique (column) vect@(w*) (with entriescig(w?), ¢, (w’) listed in
the same way as the columnsAf such thatF (w’) = A(w?,0)- C(w’); thisis
the first assertion of the lemma.

Each entry ofA(w’,0) is (the Taylor expansion af of) the restriction to
N, of an element of”'(U )vlf (by 9.11). The second assertion then follows from
Cramer’s rule. O

Now, for eachi > s;, we apply Remark 9.11 and Lemma 9.12ffo*:

S¢
fiffl(wé7 ZZ) — Z qjé(wZ’ Zé)fjéfl(wé’ Zl) + ré(wf’ ZZ) moda[)K+l )
j=1
Definition 9.14. For (3;), we set

fil(w’, z2% = 71w, 2%, i=1...,s,

Se
@',z = 71w’ 2 - Y gl 29 MW’ ZY), i=s+l s,
=1

Properties (@, (c,) and (@) follow. This completes the construction of,j*

(3)-
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To complete the proof of 9.6: Takd = N, and letfi = > c¢,Z" denote
fP =3¢l (ZP),i =1,...,s. (Note thatw = wP andZ = ZP.) We must find
a Zariski-open neighbourhoodd of & in Vp, with respect to whictN and the
fi satisfy the conditions of 9.6. S&;) ={a e |[N|: pu(fia) > di, i =1,...,s}.
ThenSsy ={a € IN| : pa(Ciy) > d — 7], |y < di, i =1,...,s}, and properties
(4), (5) of (7.2) are satisfied by tHe,, a € Sy).

At ag, properties (1) and (2) of (7.2) are consequences of the fact that
expfi o, = o, i =1...,s The property thatu(fi o) < di, i = 1,...,s, is
open inN with respect to the Zariski topology. Likewise, for eathndd € N,
property (2,4) of (7.2) is open. Thus there is a Zariski-open neighbourhéod
of a in Vp such that, for alla € N NV’, u(fia) < di, i =1,...,s, and such
that (2,q) is satisfied or§sy NV’ for all £ and eachd < k(91(¢)). (Recall Def-
inition 8.3.) By the Stabilization Theorem 8.1, property (2) of (7.2) is satisfied
throughoutSsy NV’ (This is the one place where we use 8.1.)

Consider the ideal | and|§ of Theorem 7.14 (ato), wherek > maxd; —
1. Ig(f) is generated by the ideal df and theD”c,, |3| < di — |v|; also,

| is generated by explicitly determined elementsQfU) (Remarks 9.1 and
Definition 7.13). There is a Zariski-open neighbourhoodagfin U, in which

Hx . < Hyx a,- Sincecy is coherent, by Theorem 7.14 and Remarks 9.5 there is
a Zariski-open neighbourhood of a, in V' such thatSsy NV = SHya NV =

{a €V : Hx.a=Hgy}. Property (3) of (7.2) holds at all sueh by Lemma 7.5.
This completes the proof of Theorem 9.6. O

Remarks 9.15(1) r in Theorem 9.6 isnot determined by the Hilbert-Samuel
function Hy 5,. For example, consider the following diagrams, 91> € Z(3) :
9 = N x 93, whereN; C N2 has vertices{s € N? : || = 3}, and 9N, =
(N x 915)\{(0, 0, 2)}, where the vertices dft; C IN2 are (Q2), (2 1) and (40).
Then 91y, 912 are both monotoney, = Hy, (in the language of Sect. 7), but
for 91, all 3 variables are essential.

(2) Write e = ey o, Whereey a, := Hx (1) — 1. Thenn —r < e since91
hasn — (Hm(l) — 1) =n — e vertices of order 1, each representing an essential
variable.

(3) Consider a sequence of transformations (6.7) whose centres/are 1
admissible. Suppose th@itly(a), 71(a), #1(a) = E(a)\E'(a)) and(Ng(a), “1(a),
%1(a)) are two presentations (perhaps merely formal)H¥ . ata € M;,
of codimensions 1< p < (, respectively. The construction of Ch. Il (ap-
plied with (Ny(a),.-71(a), #1(a)) playing the role of {Ny(a),.7%1(a), #1(a))”
in 6.12) gives iny_p+1(a) = (Hx,a,51();1,0;...; 1,0) (i.e., (1,0) is listed
g — p times) and, moreover, provides an (equivalent) codimengigresen-
tation (Ng(a), %/'(a), #1(a)) of Hx . ata, whereN;(a) C Ny(a) (cf. Remark
6.16). (If we begin with a codimensign= 0 presentation oHy, . (e.g., a stan-
dard basis), then Construction 4.18 provides an equivalent codimepsioi
presentation as used in the preceding statement.) In general, therefore, we modify
the constructive definition of inyin the following way: If(Nr (@), z1(a), #1(a) =
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E(a)\E'(a)) is a codimensiom presentation of iny, = Hy, . ata € M;, where
n—r<e:=ea then we put iny_n_r)(a) = (ij a,%1(a);1,0;...;1,0) (i.e.,
(1,0) is insertede — (n — r) — 1 times). (Ifn —r = e (i.e.,, X; is smooth at
a), we just have iny(a) = (Hx a,1()).) As in Sect. 6N (a),-71(a), #1(a)),
where.7Z1(a) = #1(a) U (E'(a), 1), is a codimension presentation of inyata.
fn-r<e therefore,(Nr (a), 71 (a), Pfl(a)) is a codimension presentation
of iNVe_(n_ry ata, so we re-index it agN; (a), - #e_n—r)(@), Ze—n-r)(a)) (also
settingE9(@) =0, 1<q<e—(n— r)). Then the following termve_n—ry+1(a)
of invx(a) (or 1»(a) in the case thah —r = e) is given by (the analogue of)
6.12, and the definition of inyproceeds as in Sect. 6. The resulting definition of
invyx does not depend an (nor on the ambient dimensiam cf. Remarks 13.1)
and it agrees with that of Sect. 6 in the hypersurface case.

Chapter IV. Desingularization theorems

Theorem 1.14 is used in this chapter to obtain several desingularization theo-
rems. Let 2 denote any of the classes of local-ringed spates(|X|, %) over

k in (0.2) (1)-(3). We prove embedded resolution of singularities in Sect. 10
for geometric spaceX € . 4. (cf. Remarks 1.7(2).) In the algebraic and ana-
lytic categories of (0.2) (1),(2), algebraic techniques make it possible to prove
resolution of singularities under more general hypotheseX dSect. 11); for
example, for spaceX that are not necessarily reduced. We recover, in particu-
lar, the theorems of Hironaka [H1]. Our desingularization algorithm doesanot,
priori, exclude the possibility of blowing up “resolved points”; i.e., a prescribed
centre of blowing up may include points whefgis smooth and has only normal
crossings with respect tg;. (See Example 2.3.) In Sect. 12, we show how to
modify our invariant to avoid blowing up resolved points.

The desingularization theorems of Sects. 10-12 are stated for sasesh
that X is globally embedded in a smooth ambient spsteand |X| is quasi-
compact (so that iny has a maximal locus which provides a smooth centre of
blowing up). These hypotheses are relaxed in Sect. 13. We deduce universal “em-
bedded” resolution of singularities for spacéghat are not necessarily globally
embedded. For real or complex analytic spaces that are not necessarily com-
pact, we prove canonical resolution of singularities by locally finite sequences of
blowings-up with global smooth centres. (For example, we recover Hironaka's
theorem on complex analytic spaces [AHV1,2], [H2].)

10. A geometric desingularization algorithm

Let M € .2 be a manifold, and leX = (|X|, ) denote a closed subspace
of M. Recall that ReX C |X| denotes the set of smooth points Xf and
SingX := |X|\RegX. Clearly, if X is a hypersurface, then SiXgis Zariski-
closed in|X]|.
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Proposition 10.1. Suppose- is one of the classes of (0.2) (1),(2) (s6 satisfies
(3.9)). Assume % (). Then there is a proper closed subspace Y of X such that
|Y| = SingX.

Proof. Assume first thaX is a subspace of a manifoM € . 4 of pure dimension

n. Let . % be the ideal oiX in @y . If a € |X|, defineex 4 := Hx a(1) — 1 (the

local embedding dimension of at a). For eache € I, let 7 (e) C ¢ denote

the ideal of finite type generated locally b§ and the minors of orden —e+1

of the Jacobian matrix (with respect to regular local coordinates) of a system of
local generators of% (cf. 7.11). Thus% C Z(e) and supgiu/ Z(e) = {x €

IX|: exx >e}. Define7(e) := [% : Z(e)] D . Thus.Z% . = Z(e)a if and

only if .7 (€)a = m.a. Then:

(10.2)a € RegX if and only if % a = Z(ex a)a-

To prove (10.2): Without loss of generality, we can assumedhgt= n (by
passing to a local embedding #f in a submanifold of dimensioey ;). Then
Z(ex.a)a C O ,a is the ideal generated b¥ , and the partial derivatives (with
respect to regular local coordinate)/ox;, for all f € % . (Sinceex a = n,
each ¢f /0x)(@) = 0.) We have to show thatk , = Z(n), if and only if
Fa = 0. “If" is trivial. Conversely, if % » # 0, then the order of7(n), is
strictly less than that o ,.

Now let e, = mingc|x| €x.a and letY C X denote the subspace defined by
the sheaf of idealsk, = N,... (7 (e)+ Z(e)).

Let a € |X|. Since Z(€)a = Cm a if and only if e > ex 5, it follows that
HK.a=0Cnaifandonly if.7(€)a = Om a, €. < € < exa. Therefore,% a = a
if and only if % 2 = Z(€)a, €. < € < e&x.a. On the other hand, & > e, then
F(e1) D Z(e). Therefore, X o = (4 if and only if % 2 = Z(ex.a)a- By
(10.2),a € RegX if and only if a ¢ |Y|; i.e., |Y| = SingX.

Of course, % D . Considera € |X| such thatex o = e,. If a € RegX,
then. % 2 = Ona ; F.a- If a ¢ RegX, thenZ ; 7 (ex.a)a, SO that% 5 =
T (exa)a+ 7 (&xa)a 2 Ka-

In this proof, it is clear that the assumption thétis globally embedded in
M is only a matter of convenience; the arguments can be rewritten without this
assumption. O

Consider a sequence of transformations (1.1) withiadmissible centres.
If a e |Mj|, setSny (a) = {x € [Mj| : invx(x) = invx(a)}.

Remarks 10.3(1) If a € SingX;, thenSn, (&) C SingX; because the Hilbert-
Samuel functioerj x already distinguishes between smooth and singular points
x of Xj.

(2) Suppose thak; is smooth. Let§ = {x € |X| : si(x) > 0}; then§
is a Zariski-closed subset ¢K;|, by Proposition 6.6. Clearly, i € §, then
SHVX (a) C S .

A desingularization algorithm; proof of Theorem 1.8uppose|X| is quasi-
compact, so that inv takes only finitely many values ofX|. We can get an
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invx-admissible sequence (1.1) by defining the centres of blowinG;ugcur-
sively as follows: Assume thaty, ...,o; have been defined. We introduce the
extended invariant ifi(a), a € M;, as in Remark 1.16, using any total ordering
on the subsets d;. If X; is not smooth, leC; denote the locus of maximal val-
ues of in on SingX;. Since Sing; is Zariski-closed, it follows from Theorem
1.14 and Remarks 10.3 (1) th&} is smooth. By 1.14 (4), after finitely many
blowings-up with such centreX; is smooth.

If X is smooth, letC; denote the locus of maximal values of §nen §.
By Theorem 1.14 and 10.3 (2 is smooth. ThereforeX ., is smooth. After
finitely many blowings upoj.1, ..., ok with such centresS, = 0. It is clear
from the definition ofs; that, if X is smooth andS, = @, then eachH € Ei
which intersects is the strict transform iy of ai;}(ci), for somei such that
X is smooth alondC;; therefore, Xy and Ex simultaneously have only normal
crossings. We have proved Theorem 1.6.

Remark 10.4 It may happen in Theorem 1.6 th&t = @; 1.6 is a meaningful
geometric desingularization theorem at least in the case thaXRedariski-
dense in|X|.

Geometric spacesLet. 2 be any of the classes of (0.2) (1), (2). Supp¥se

4. Let S be a subset giX|. We say that a subspateof X (in . 2) is a smallest
subspace whose support containpi®vided thaS C |Y|and if T CY,S C |T|
thenT =Y. SinceX is locally Noetherian, there is aniquesmallest subspace

S of X whose support contairs; S is the intersection of all subspacesXf(in

.-4) whose support contairfs. In particular, there is a unique smallest subspace
X, of X such thatX,| = |X[; namely,X. = |X].

Definition 10.5. We say that X igieometrically reducedif X = X,. We say that
X is ageometric spacdf RegX is Zariski-dense in X (i.e., % RegX).

Proposition 10.6. X is geometric if and only if X is geometrically reduced.

Proof. If X is geometric, then of coursé is geometrically reduced. Assumxe
is geometrically reduced. By Proposition 10.1, there is a subsgaoé X such
that X; ; X and|X|\RegX = |Xi|. Let Xo = RegX, so thatX, is geometrically
reduced. Define; := |X|\|Xo|. ThenX; is geometrically reduced. Clearl},; C
X1 and|X] = |Xp| U |Xz|. SinceX is geometrically reduced C Xo] [X2, where
Xo] [X2 is the subspace dfl (with support|Xo| U |Xz|) defined by the ideal of
finite type . %, - .%,. Moreover, Reg; C |Xo| because a smooth point &%
outside |Xy| would necessarily be a smooth point X§] [Xz, hence ofX, in
contradiction to the definition aXg.

We must showX, = (). SetY = X5, and letYy, Y1, Y, be the analogues for
Y of Xo, X1, X, above. It is enough to showW = Y, because then, i # 0,
Y =Y, C Y1 G Y; a contradiction. Now, since R&g C [Xo|, [Yo| C [Xol, so
that |[Y|\[Yo| D |Y|\|Xo| = [X[\|Xo|. Therefore,Y > |Y[\|Yo] D [X[\|Xo| = Y;
ie.,Y = Yo. O



286 E. Bierstone, P.D. Milman

The desingularization algorithm above can be modified so that a quasi-
compact geometric space is desingularized by transformations that preserve the
class of geometric spaces: LBt € .4 be a manifold andX a closed sub-
space ofM. AssumeX is geometrically reduced. We consider a sequence of
transformations (1.1) where eaefy; is defined not as the strict transform of
X;, but rather as the (unique) smallest subspacejjqi(xj) whose support con-
tains |0'j_+::||'_(x]‘)|\‘0'j:%_(cj')|; in this case, we say thag .1 is the geometric strict
transformof X; by oj+1. EachX.; is geometrically reduced.

Using the geometric strict transform, our invariant,ita), a € M;, j =
0,1,2,..., can be defined by induction gnas before provided that the centres
Ci, i < j, are ink-admissible in the sense of (1.2), and our desingularization
algorithm makes sense exactly as before for the following reason: Giviet
Y;+1 and X+, denote the strict and geometric strict transformXofrespectively.

Leta € X; anda’ € ajjr}(a). SinceHXj .- Is locally constant or€; andl%}jﬂ)a/ D
’7Yj+1,a/’ ijﬂ)a/ < HYj+1,a/ < ij Ja and if ijﬂ}a/ = H)(j Ja thean+1’a/ = Yj+17a’-
We get the following variant of 1.6:

Theorem 10.7. Suppose that X is geometrically reduced and tbdtis quasi-
compact. Then there is a finite sequence of blowings-up (1.1) with srimwgth
admissible centres;Qwhere each X1 denotes the geometric strict transform of
X%;) such that:

(1) For each j, either € C SingX; or X; is smooth and CC X; N .

(2) Let X' and E denote the final geometric strict transform and exceptional
set, respectively. Then’Xs smooth and X E’ simultaneously have only normal
crossings.

If o denotes the composite of the sequence of blowingsruthens(E’) C
SingX; clearly, o ~1(RegX) is a smooth open subset pf’|, ando—1(RegX) is
open and closed iX’. (In fact, if T = 0~1(RegX) and Zr C . denotes the
ideal of T, then|T| = |X’|\suppZ.)

11. Algebraic desingularization theorems

In this section, 4 denotes any of the categories in (0.2) (1) or (2), so théat
satisfies (3.9). LeX = (|X|, ) € .-4. Assume thai is a closed subspace of
a manifoldM = (|M|, ) € .4, and let.% C ¢y be the ideal sheaf oX.
Since@y is a coherent sheaf of rings ang an ideal of finite type, the radical
V. % C 4y is an ideal of finite type. LeXeq denote the subspace bF defined
by the ideal sheaf%, := v.%; thus Xeq C X and |Xeed| = [X|. (Xreq is the
“associated reduced subspace”a)

Let a € |X|. Let Fxa C “m.a denote the idealf € Ay a: v*(f) = 0
for every homomorphism*: @y a — K|[t]] such that Ker* O .% a}. (Zx|.a
is the ideal of germs of regular functions atwhich “vanish on every formal
curve” (). Thus. % a C Keqa C -Zx|,a- Using Artin’s approximation theo-
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rems (in the case of curves; i.e., with a single independent varigbige can
replace the formal curveg in the preceding definition by formal curvessuch

that dinay o /Kery* = 1 (i.e., Kern* defines a regular curve which admits a
formal parametrization as above, and therefore, for example in the analytic case,
a convergent parametrization.) L¥t(.7x, ») be the germ of a subspace bf

with associated idea¥x| 5. It follows thatV (x| ») depends only on the germ
|X]a of |X| ata, andV (Fx,a) is the smallest germ of a subspace with sup-
port |V (Zx|.a)|. In particular, if T is (locally) a Zariski-closed subset (X |, we
likewise have an idealr o O Zx|a. (If k is not algebraically closed7x, is

not necessarily a sheaf of ideals of finite type. In the definition above, we have
assumed thék is the residue field a/my , (€.9., as in the categories of real
analytic spaces or real algebraic varieties); in genétal= M.a/My 5 is an
extension of the ground field, andk[[t]] would be replaced b¥([[t]], where I

runs over all finite extensions df,.)

In the case of analytic spacegx; . C “u a is the ideal of elements which
vanish on|X|a, and |V (Zx|a)| = [X|a. (These assertions are consequences of
the curve-selection lemma, which can be proved, for example, using Sect. 10:
By Theorem 1.6/X| is an image of a manifold by a proper regular mapping;
therefore, any € |X|\{a} close enough ta can be joined t@ by a “convergent
curve” v as above.) The preceding assertions for analytic spaces are not valid in
the real algebraic example following.

Example 11.1.Let X =V (xZ — x;x2) C R3. ThenX,eq = X. But if a = (a1, 0, 0),
wherea; < 0, then.7x| a = (X2, X3).

Singular subsets ofX. If a € |X|, we letS = S5, _ denote the Hilbert-Samuel

o_k
subspace o#; i.e., . 75 = Y .oy 7 s(rk), Where eactry = q — Hx a(k) (in the
notation of Remarks 9.1). In particuld| = {x € |X|: Hx x > Hx.a}-

Definitions 11.2.SingX| := {a € |X[: V (Fx|.a) is not smooth; i.e.4%m a/-7x|a
is not a regular local ring}.

Sing;, X = {a € [X[: dimV (Jx|a) < dimXa}. (dim denotes the Krull di-
mension of the corresponding local ring; th@dmV (Zx a) = dimy a/-7x|.a-)

Singy X :={a € [X[: Fxja & Ts|a, Where S= Sy, }.

X = Sing, X U Singy;, X.

Remarks 11.3Sing;,,X C SingXeq because, iXreqa is smooth, thenZx , =
Pregyar SO that dinV (Fx a) = dimXeqa = dimX;. Clearly, Sing, XUSingXeq C
SingX, with equality if X = Xeq. It is not true, in general, thall C SingXeq
(or even SingX| U Singy;,,X) becauseHx x need not be locally constant at a
smooth point ofX.q. (For example, consider the complex analytic subspace
of C2 defined by the intersection of ideal& = (x?) N (x*,y). Then. %, = (X)
but Sing, X = {0}.)

Note that SingX| (or even SingX| U Singy;,X) need not be a Zariski-closed
subset of|X|; for example, the real algebraic subsétz® — x?yz — x* = 0 of
23 is smooth except on the half-line=z =0,y > 0.
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Theorem 11.4. Let a € [X| and let S= Sy, . Then:
(1) &s,a < dimXy; moreover, § = X, if and only if X is smooth.

(2) Suppose that & X. Then Xeqa iS sSmooth, § = Xreqa, andinvg(a) =
(Hx,a, 0;00). (Hereinvy is “at year zero”.)

(Recall that, for alla € |X|, &x a := Hx a(1) — 1 is the minimal local embed-
ding dimension oX ata.) We will need the following three lemmas.

Lemma 11.5. Let A be a Noetherian local ring, and letd g be ideals of A, where
q is prime. Writey/] = (p; for the (unique) irredundant prime decomposition of
V1. If dimA/q = dimA/1, theng = p; for somei.

Proof. Sinceq D | andgq is prime,q D /1 = pi; therefore,q D p; for some
i, sayi = 1. Then dimA/p; > dimA/q = dimA/+/I = max dimA/p;, so that
dimA/p1 = dimA/q. Thereforeg = ps. O

Example 11.6. Let X be the real-analytic spacé(x$ — x2x3) c R and let

a = (a1,0,0), & # 0. Then.7x, 5 is generated byks — xlz/sxz; V(7x),a) is a
component ofXeqa = Xa, by 11.5. But there is another component, given by
X2 + x12/ 3%z + xf/ 3x22.

Lemma 11.7. Let A be a Noetherian local ring. LetC | be ideals of A, where

p is prime and 1= /1. If dimA/p = dimA/I, then | = p.

Proof. Let (., = pi denote the irredundant prime decompositionl ofThen
dimA/l = max dimA/p; = dimA/p1 say. Now,p C | C p1 and dimA/l =
dimA/py; therefore,p = p1. Thuspy = p C pi, 1 = 1,...,s; a contradiction
unlesss = 1. Hencel =p. O

Lemma 11.8. Suppose & X and V(x|.a) is smooth. Then ¥7x, 1) = Xreda-

Proof . Since V(7x|,a) is smooth and dinV (7x|.a) = diMXreda, V(Fx|.a)

is a component 0fXeqa, by Lemma 11.5. Lef\p; denote the irredundant
prime decomposition of4,a; thus theX; := V(p;) are the irreducible com-
ponents ofXeqa. Sincea ¢ Sing, X, [Xi| = |V (7xa)| for all i. (Otherwise,

the Hilbert-Samuel function would not be locally constant, by a simple semi-
continuity argument.) Therefore, for eathdimy a/Zx|.a < dimy a/pi <

dim v a/ AKieqa = diMy a/Fx|.a, SO that all are equal; singe C .7x|  are
both prime, it follows thalp; =.7x, . In particular, there is only one irreducible
componentX;. O

Proof of Theorem 11.4We identify (AMa with K[[X]] = K[[Xq,...,Xs]] using
local coordinates. Ledl = 91(I) denote the diagram of initial exponents of
| = %K a C K[X]]. We use the notation of (7.1). Ldt(X) = fi(W,Z) € I,
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i = 1A ..,S, be the standard basis bf so that thef; satisfy (7.2) (1)—(5). Let
J = TFsa C KIXI.

(1) It follows from Theorem 7.14 and property (4) of (7.2) that =
(Z1,...,Z) C J, so thatesa < n —r. On the other hand, dilk, =
dimKk[[X]]/l > n —r. (Consider the homogeneous idd#lin K[[X]] gener-
ated by the initial monomials mdp(X). Then dimX, = dimKk[[X]] /H since dim
is determined by the Hilbert-Samuel function, and &{frX]] /H > n—r because
the morf; (X) are independent oV = (Wy,...,Wh_,).) Thusess < n—r <
dimX, < ex.a, and it follows thatS, = X, if and only if X5 is smooth.

(2) Suppose that ¢ X; ie., dinV () = dimXa > n —r and
Tsla = Ax|a- Then €) = (Zy,...,Z) CJ = Tsa C Hs|,a = Fx|,a» SO that
dimV (x| .a) =N —r and, by Lemma 11-7-17?@@ = (Z,...,Z); in particular,
V (Zx|.a) is smooth ands, =V (Fx|,a). By Lemma 11.8V (.7[x|a) = Xreda. FOr
eachi = 1,...,s, write fi(W,Z) =27 + %, e G, (W)Z7, wherea' = (0,') €
N"—T x N'; thenc;, = 0if |y| < |'|. (Otherwise, by Theorem 7.14/2.5\,51 ; 2))
It follows from the constructive definition of igvthat inw(a) = (Hx a, 0; c0).00

Corollary 11.9. X' = Singy X U SingXeg. If X = Xeq, thenX = SingX.

Proof. By Remarks 11.3%" C Sing, XUSingXeq and, ifX = Xeq, then Sing, XU
SingXeq = SingX. But by Theorem 11.4, i& ¢ X, thena ¢ Sing, XU SingXeg.
O

Remarks 11.10f a € |X|, let |Shvy )| := {X € |X]| :invx(x) > invx(a)}. (This

is Zariski-closed, by 1.14 (1).) & ¢ X, then.7 5 = .74 5, whereT = [Snvy(a)l,

by (2) in the proof of 11.4..;@3 = (Z), as in (2), and the argument at the end
shows.fna = (2).) Define Sing, X :={a € |X|: Jx|a G Fr a}- It follows that

¥ =8Sing,, X U Singy;,X.

Lemma 11.11. If |X| is quasi-compact, thel' is a Zariski-closed subset ¢X]|.

Proof . Let SindfX := {a € |X| : Hy. is not constant on any Zariski-
open neighbourhood o& in |X|}. Clearly, Sing*X is Zariski-closed and
Sing, X C Sing®X. Since|X| is quasi-compacty . takes only finitely many
values. Therefore, for alh € |X|, Z; = U{|34x,b\ i b e |X], Hxp £ Hx,a}

is Zariski-closed, andx € |X|: Hxx < Hx.a} = |X|\Za is Zariski-open (cf.
(2) = (1) in the proof of Lemma 3.10). It follows (using Theorem 11.4 (2)) that if
a ¢ ¥, thena ¢ Sind?®"X; hence Sinff"X USingXreq C Singy X USiNgXreq = X.
Thus X = Sing@X U SingXeg. 0

Remarks 11.12The same argument shows that, in general, any quasi-compact
subset of X| admits a neighbourhodd such thatU NX is closed in the induced
Zariski topology ofU ; in fact, such tha N X = (U NSingXeg) U{a € U : Hx .
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is not constant on any open neighbourhoodah the induced Zariski topology
of U}.

Proposition 11.13. Leta€ X and let S= 34x,a- Then|S|, C Xs.

Proof. By restrictingX to a suitable neighbourhood af we can assume that
Hx x < Hx a for all a € |X|, and thatHy . takes only finitely many values, so
that X = SingX U SingXreq, as in the proof of 11.11. The$| = {x € |X| :
Hx x = HX,a}-

First assume thakKeqa IS smooth; we can therefore assume thal is
smooth, so that? = Sing, X = Sing*X. Then S| S IX| sincea € Sing; X.
Suppose the assertion is false. TH&M\ X' is a Zariski-open subsét; of |X]
such thatU; ; # § and Hx x = Hx a, X € Uy. Write [X|\X' = Ujk:1 U;, where
the U; are nonempty Zariski-open subsets |¥f on which Hx . takes distinct
constant values. We can assume tHigs # () for all j (by shrinking to a suitable
neighbourhood of). Even thenk > 1. (Otherwise,|X| = |S| U X, so there
existsb € X\|S|. SinceHx p < Hx a, Hx,. assumes a minimal value Hy ,.
This value is attained on a Zariski-open set, in contradiction yXth= U; U X.)
PutY: = [X\U;>2Uj, Y2 = [X[\U1. ThenYi,Y; are Zariski-closed subsets of
IX| such thaX| = Y1 U Y2, a € Y1 N Y, but neitherY; C Y, nor Y, C Y; this
is impossible sincéX| = Xeq is smooth.

Secondly, assuma € SingXeeq but that. %, a is prime. We can assume
dimS, < dimS;, for all x € |S| (by Zariski-semicontinuity oHs .). Suppose
there existsd € |[S)\X. ThenS, = Xieqp by 11.4, so that dinXy > dimS, >
dim$S, = dimX, = dimX, (the latter equality sincélx » = Hx p); hence all are
equal. Since%,,a is prime, it follows from 11.7 that’k ,a = -Z5.4a- But, by
11.4,e5.4a < €52 < diMXy = diMXieda < €x therefore all are equal and
Xreda IS Smooth. (A contradiction.)

It remains to consider the case that,,a is not prime. LetZ; denote the
distinct irreducible components Ofeqa, and letX, = UY; corresponding to
an irredundant primary decomposition .g% ». Then eachY;| C |Z| for some
i =i(), and eachz| = |Y;| for somej =j(i). For eachi = jo, Hx a > Hw, .a»
whereW, = J Y;. It follows from semicontinuity ofHx . that, |S|s C N|Yj| C

i#o
N|Zi| C (SingXred)a C X (the latter inclusion by Theorem 11.4 (2)). O

red,Q?

Embedded desingularization theoremsWe assume that, for ak < .4, |X|
is quasi-compact. (Examples include schemes of finite type lkoyver compact
analytic spaces ovek.) In general, however (in view of 11.12), Theorem 11.14
below applies to desingulari2€ over some neighbourhood of any quasi-compact
subset of|X]|. In Sect. 13, we will obtain a global canonical desingularization
theorem for non-compact analytic spaces.

Let X € .4. AssumeX is embedded in a manifoldl . SetXy; = X, Mg =M.

Theorem 11.14 (cf. [H1, Main Theorem 1]). There is a finite sequence of
blowings-up (1.1) with smootihvx-admissible centres;Guch that:



Canonical desingularization in characteristic zero 291

(1) For each j, either €C X = Sing, X; U SingX; req Or X req is Smooth and
Cj - Xj N EJ'.

(2) Let X' and E denote the final strict transform of X and exceptional set,
respectively. Then £ . is locally constant onX’|, X,y is smooth, and % E’
simultaneously have only normal crossings.

Proof. The algorithm is an obvious modification of that of Theorem 1.6: (The
assertions are the same wherr X.eq.) We define the centres of blowing

as follows. Assume thaty, . . ., o; have been defined. We introduce the extended
invariant img (a), a € M;, as in Remarks 1.15, using any total ordering on the
subsets off;. If Xj # (), where Y := Sing,X; U Sing;,X;, let C; denote the
locus of maximal values of iy on %j. Since X is Zariski-closed (11.11), it
follows from 1.15 and 11.13 thad; is a smooth closed subspaceX¢f By 1.14

(4), after finitely many blowings-up with such centres, = ; i.e. (by 11.9),

X; red is smooth and—lxj .- is locally constant onX; |.

Now assumeXj req is smooth andHy; . is locally constant offiX;|. We consider
invy , starting withX; C M; as our spaces arff] as our exceptional set “at year
zero”. (In particular, ifa € |X;|, thens,(a) := #{H € E : a € H}.) Define
§ = {x € |X] : sux) > 0} and letC; denote the locus of maximal values
of inv?(j on §. ThenGC; is a smooth closed subspaceXf(cf. 10.3 (2)), and if
oj+1: Mj+1 — M; is the blowing-up with centr&;, then X1 eq is smooth (by
3.14) andHy,, . is locally constant onX;.1| (by 1.14 (1)). After finitely many
blowings-upoi, j <i <k, with such centre€; Cc S, we getS, = (); therefore,

Xk red IS sSmooth,Hy, . is locally constant onX|, and X req, Ex Simultaneously
have only normal crossings. O

By Theorem 11.4, the Hilbert-Samuel spageg, _ of X’ (in Theorem 11.14)
coincides withX/,4 at every pointa. If o: M’ — M denotes the composite of
the blowings-upr; in Theorem 11.14, theR’ = 0 ~1(X), whereX = Sing, X U
SingXeq; in particular, o restricts to an isomorphism over R¥g Of course,
X' =@ if X =]X].

Example 11.15Let X c 22 denote the space (restriction to therational points

of an affine scheme ovét) defined by ¥ — x%)?+2z2 = 0. ThenX is a reduced
hypersurface whose order (and therefore whose Hilbert-Samuel function) is con-
stant. Clearly,” = |X|. But X can be desingularized in a meaningful sense by
blowings-up over the origin.

Example 11.15 shows that the Hilbert-Samuel function itself is not a delicate
enough invariant for resolution of singularities. But the desingularization algo-
rithm determined by iny (in the proof of Theorem 11.14 above) nevertheless
makes good sense because, for gaske can ignore componeng of the max-
imum locus of ink on % such thatC, = |X|, for all a € C. The result will
be: Hy: locally constant orX’|, |X’| # # smooth, andX’|, E’ simultaneously
normal crossings.
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Consider a sequence of gnadmissible blowings-up (1.1). For eaghlet
T, = Sind&'X; (defined in analogy with Sirfd;); then|X; |\T; is Zariski-open
and dense inX;|. Leta € Tj, for somej. If |X |5 is irreducible, then (the germ
ata of) |Spvy(a)| C Tj,a (as in the proof of Proposition 11.13). We do not know
whether this is true in general. If it is, then there is a variant of the preceding
result with eaclC; C T;. (In particular,a(E") C To has empty intersection with
a Zariski-open and dense subsetXf.)

12. How to avoid blowing up resolved points

Consider the algorithm used in Theorem 11.14. (It will be clear that the main
result of this section, Theorem 12.4 below, applies to the other desingularization
theorems of Sects. 10,11 as well.) Our invariantxirfirst prescribes a finite
sequence of blowings-ug+1: Mj+1 — M;, j =0,...,k, with smooth admissible
centresC;, such that:

(12.1) (1) For eaclh, C; C X = Sing, X; U SingX; red.

(2) Xis1 = 0; i.e., Xis1,red is smooth andHy, ,, - is locally constant ofX.1|.

Theorem 12.2. Suppose that X; # (). Then there is a further finite sequence
of blowings-upoj+1: Mj+1 — M;, j =k +1,...,¢, with smooth centres;Csuch
that:

(1) For each j, G C X; N E, G has only normal crossings with respect to
Ej, and G includes no point where;X.q and E simultaneously have only normal
crossings.

(2) Xp+1,red @and E4q simultaneously have only normal crossings.

(It follows from (1) and (12.1) (2) thaX;+1,req is smooth andHy,, - is locally
constant onX;+1/,j =k, ..., ¢) Theorem 12.2 is a consequence of Theorem 12.4
below (applied withM = My+1, X = X¢+1red aNAE = E4q).

SupposeX C M are smooth spaces and tHatis a collection of smooth
hypersurfacesli c M,i = —q, ..., —1,0, such thaE has only normal crossings.
(We assume that, for a#l € |X|, all nonempty germsi; 5 are distinct and none
containsX,.) We consider a sequence of transformations

— M g+ M — - — M 5% Mo=M
(12.3) Xj+1 X X1 Xo =X
Ej +1 EJ' El Eo =E

such that, for each: (1) oj+1 is a (local) blowing-up with smooth cent® C
X; NE; such thatC; andE; simultaneously have only normal crossings. X2
is the strict transform o by oj. (3) Ej+1 = {Hij+1 : i = —q,...,j +1},
whereHjgp = Hi, i = —q,...,0, Hi j+«1 is the strict transform oH; by oj+1,
i=—0,...,j, andHj+1j+1 = O']-:_::II:(CJ'). (By (1), Xj+1 is smooth andg;+; has only
normal crossings.)

Let B = {Hj : 1 <0},j=01,....1fae M), witeE(a)={H € F :
H > a} andE*(@) = {H € E* : H > a}. Each centreC; will be chosen,
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more precisely, in the following way: For eaehe Cj, there will be a subset
F(a) of E(a) containingE(a)\E*(a), such thatX;, F(a) simultaneously have
normal crossings &, Cj, F(a) simultaneously have normal crossingsaatnd
Cja C Haforall H € E(a)\F(a).

Theorem 12.4. There is a sequence of blowings-up as in (12.3), such that:
(1) For each j, G C X", where X} := {a € [X[: Xj and § do not simulta-
neously have normal crossings a}.a
(2) Xp+1 and E4q simultaneously have only normal crossings.

Lemma 12.5. For each j, %" is a (nowhere dense) Zariski-closed subsepf.

Proof. ForallA C Ej, setXj(4) =X Ny, H. ThenXy = UAcEj {a e X )
& (1),a > d(a) — #/4, whered(a) = dimX; ,}. Sinced(a) is locally constant on
1Xj|, X" is Zariski-closed, by Remarks 9.1. O

Remarks 12.6For eachj andi = —q,...,j, Xj NH; is a hypersurface ii;; let
Fj C Cx denote the corresponding (principal) ideal. lae€ [Xj|. ThenX; and
H; have normal crossings at if and only if vza=0orl (cf. Remark 1.8).
Clearly,a ¢ X" if and only if: (1) vz,a=0or 1,i =—q,...,0. (This condition
is automatically satisfied far=1,...,j.) Q)X NE:={XNH; : i =—q,...,j}
has normal crossings at and any two nonempty germx;(N Hj; ). are distinct.
Note that ifC; C X;NHj =V (%), then.% j.1 is the transfornylo, +1(7{]) =

[aj+l(.7.])  Yexd Of % by (the restriction taX;.; of) the blowing-upgj+1 (cf.

Proposition 3.13 ff.); i.e.,% j+1p, b € a]:}(a), is given by the transform of the
infinitesimal presentatiof(f, 1)}, wheref denotes a generator of; ..

Proof of Theorem 12.4Me argue by induction on diX. Consider any sequence
of transformations (12.3). Writ¢4o = .%o, i = —q,...,0. For eachj andi =
fq, ...,J, let Z j+1 denote the strict transform g&; by oj+1 (More precisely, by

+1[X+1); 1.8, 7,J+1:Zkzo[0f&(7fu)i Yexd- ThenZj = 7,1 =1,....j, and

7 =% i, i= ..., 0, where%j; is a product of exceptional divisot%,;,
h=1...)j.Ifae |XJ | andf;, gi denote generators o ,, 7 a (respectively),
i =—d,...,0, thenf; = D; - g, whereD; is a monomial in generators o a,
h=1,...,j. (D is the greatest factor df having this form.)

Set 7 = 7 qj-- Zi i =0,1,.... Leta € [Xo|. Write v1(a) = vy a.
If g= g-q - 9o, whereg; generatesZg, i = —q,...,0, thenvi(a) = pa(9)

and % = {(g, ua(9))} is a presentation aof; ata of codimension 0 (inXp). We
can use the construction of Chapter Il to extend, jpw v; to an invariant iny,
which is defined inductively over a sequence of (local) blowingsjup Xj+1 —
X; and successive transformg j.; of %, i = —q,...,0, where the successive
centres of blowing up are iny-admissible. Ifa € [X;|, =Vza
Consider any such sequence. leete |X;| and lett(a) denote the number
of distinct ideals Zj o C @j a1 =—0,...,0, such thatz/%j a > 1. Clearly,
V7aZ t(a), andu;,ha = t(a) if and only if all proper idealsZ; a,i = —q,...,0,
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are distinct and of order 1. S&:={x € [Xj[ 1 vz x > t(x)}. ThenZ is a
Zariski-closed subset diX;|. If a € Z, then the gernty, , (@) C Z (since
alreadySny, /z(a) C Z).

We can obtain such a sequence of jradmissible transformations &f and
the Zo by choosing as each successive ce@réhe locus of the (finitely many)
maximal values of the (extended) invariant Ey‘,won Z;. The blowings-upgj+1:
Mj+1 — M; with centresC; form a sequence (12.3) where edghc 27" (and if
a € G, thenCj o C Hj 4 for all Hyj € E*(a)). After finitely many blowings-up,
we getZg = . Then allV (Z) are smooth and, for each € |X|, all proper
ideals Z » are distinct.

Now, by induction on dinX, we can assume that Theorem 12.4 holds replac-
ing M, X andE by My, V(Z) C X and Ex\{Ho}. Then the corresponding
sequence of transformations b, Xx and Ex also satisfies (12.3) and 12.4(1).
(The essential point is this: Let € V (Z). Since all proper idealszy 5 are
distinct, it follows thatV ( Zw) ¢ Hik, i # 0, and (by Lemma 12.7 below) that
if F is a subset oE¢\{H}, andV (Zx) and F simultaneously have normal
crossings af, then so doxy andF.)

Lemma 12.7. Let W C Y C N be smooth spaces, and let F be a collection of
smooth hypersurfaces in N. Leta|N|. If W, ¢ Hg, forallH € F, and W and
F simultaneously have normal crossings at a, then sodo Y and F.

The proof of the lemma is simple. The result of our inductive application
of Theorem 12.4 above is that we can assume, in addition to the preceding
conditions, that th& ( Z), 1 = —q, ..., k, simultaneously have normal crossings
at each point oV ( Zo). We can then apply Theorem 12.4 (by inductionMp,
V(Z_1x) andEx\{H_1«}, and afterwards continue for eack —2,...,—q, to
arrive at the assumptions of the combinatorial Lemma 12.8 following. (In fact,
in addition to the hypotheses of Lemma 12.8, we have: For eachq,...,0
and eacta € V(Zi), Fka = Zhka, | #h <0, and Za = Oxa if Zikais a
proper ideal. We will not use this extra information.)

The combinatorial invariant in the proof of 12.8 is a refinement of that in
Theorem 1.13, for the purpose of the stronger conditions required on the centres
of blowing up.

Lemma 12.8. Suppose that, for each & [X«|: (1) v , = 0 or 1, for all
i.(2) The Z, i = —q,...,k, simultaneously have normal crossings at a, and
all proper ideals Z 5 are distinct. Then there is a sequence of blowingsrup,

i =k, ..., ¢ asin (12.3) with centres;&dmissiblen the stronger sense that each
G is the intersection of the {7 ) for certain i > 0, such that the conclusion of
Theorem 12.4 holds (i.e., @ X, j =k,..., ¢, and X7,; = 0).

Proof. Consider any sequence of blowings-#ps, j =K, ..., whose centres are
admissible in the sense of the lemma. For epcthe transforms% 41 of the
T =%y Fj, i <0, are given byF 11:7Yee0,,1(%) = % j+1- F j+1, Where
D 41 = Yexe0:1(Z5) (becauseS; ¢ V(7). i < 0).
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If a € |X|, we definery(a):=# (a), wherel(a)={i = —q,...,0 :
Fia F Fjal Then X = {x € [X| : 7~(a) > 0}. Clearly, 7o, is Zariski-
semicontinuous oifX;|. Leta € |Xj|. Thenry, admits a presentation at (of
codimension 0 inX;) given by.7(a):={(Di,1) : i €1(a)}, whereD; is a gen-
erator ofZj .. (We use “presentation” here in the weaker sense of “with respect
to transformations of type (i)” only (cf. Definition 4.6), where the centres of
blowing up are admissible in the stronger sense above. Invariance will be auto-
matic from the combinatorial definitions, so that transformations of types (ii), (iii)
are unneeded.) Ldd,; denote the greatest common divisor of Dg i € | (a).
Write D; = D,y - fi, i € 1 (a). We introduce the invariant;(a):=min pa(fi) and
define inq(a)::(Tfj(a), z/l(a)). Obviously, 0< v1(a) < oo. If v4(a) =0, we set
invy (a):=invy(a); in this case, 7 (a):={(D.1, 1)} is a codimension O presenta-
tion of inv,, ata. Assumev,(a) > 0 (i.e.,v1(a) > 1, sincers(a) € N). Then
Z@)={(f, ) = (fi,11(a)) : i €l(a)} is a codimension 0 presentation of inv
ata, and .z = 1.

We can extend invto an invariant iny, essentially using the construc-
tion of Chapter I, withE"(a) = @ for all r (so there are no terms in
inve,): Let a € |X| and letx, denote a local generator at of the ideal
Fia = Fja of Xy NHj, i > 0. For each f(, 1) € .7(a), we can write
f = Hxiai(f) (up to an invertible factor). Since 7@ = 1, > ai(f) =

i>0 i>0
for somef, so that.7(a) ~ .7(a) U {(x,1)} for somei > 0. Let iy de-

note the least such. Then iny admits an equivalent codimension 1 presen-

tation (Ny(a),.7%(a)), whereNy(a) = Hij » and.7%,(a) = {( T x40 e —
i#ig

ao®) : (Fo) € FA(a)}. We definera(@)i=yiz(@) — 3 sz (@), where

io#i>0

12(2):=p.52,(@) and eachuz w; (@)= min{puw; a(h)/pn = (h, pn) € F21(a)}. Thus

0 < 1p(a) < co. We set ing(a):=(invi(a); v2(a)); inv, admits a codimension

1 presentation(Ny(a), . 7(a)) ata, where.7(a):={ (D" - h, un - 1»(a)), for

all (h, jin) € .7%(a), together with(D,2, 1 — uz(a))} andD.:= 1 %" @ (cf.
i#io

Ch. 1l). In the case that»(a) > 0, it follows thaty ) = 1. The construction

can be repeated in increasing codimension until eventuall(a) = 0; then

invy, (a):=invi.,(a).

We can obtain a sequence of blowings-tips, j = K, ..., satisfying the
conditions of the lemma by choosing as each successive dgntiee locus of
the (finitely many) maximal values of the (extended) invariantiman . For
somej, sayj = ¢, we get¥;,, = (). We have thus proved the lemma and Theorem
12.4. O

Example 12.9. Let X = V(x3 — x2%2) C k® = M, and letE = {Ho}, where
Ho = V (x3) (cf. Example 2.3, Year one). Clearl = {O}. If we use &, x2) as
coordinates orX, thenX NHy = V(.7), where.7 C ¢ is the ideal generated
by xax2. Theorem 12.4 prescribé& = {0} as the centre of the first blowing-up
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o1: M1 — Mg =M. ThenE; = {H()]_7 H]_]_}, whereHg; = H(; andHq; = O’l_l(Co),

so thatX] = X; N Hp1 N H11. The hypotheses of the combinatorial Lemma 12.8
are satisfied by i, E;; the lemma prescribeG; = X7 as the centre of the next
blowing-up o2: Mz — Mj. Then X3 = §; i.e., X; and E; simultaneously have
only normal crossings.

13. Universal desingularization; canonical desingularization of non-compact
analytic spaces

Let. 2 denote a class of spaces in (0.2) (1) or (2). Xet (|X], %) € . 4. Then

X can be locally embedded in a manifold; i.e., eacke |X| admits an open
neighbourhoodJ in X such thatX|U can be embedded as a closed subspace
of a smooth spact <. 4. If o: X’ — X is a blowing-up ofX with (smooth)
centreC, then, for any local embedding|U — M, o: X'|[e~}(U) — X|U

can be identified with the morphisnX{U)" — X|U induced by the blowing-up

7 M’ — M with centreC N'U, where K|U)' is the strict transform oK|U

by 7. Moreover,o: X’ — X is uniquely determined (up to equivalence) by this
condition.

Our invariant iny (as defined in Chapters Il, 11@ priori depends on a pair
(X, M), whereM is a manifold andX is a closed subspace bf. However:

Remarks 13.1(1) Consider two such pairsX(,M'), i = 1,2, and an iso-
morphismy: M1 — M2 such thatp(X1) = X2 Write (X),M3) = (X',M")
andE) = 0, i = 1,2, and setyy = ¢. Suppose we have a sequence of
invxl-admissible transformations dfig, X3, E} as in (1.1). (We will write

J+1

(M1 X4, Bl — (Mll,XJl, E"), i =0,1,..., to save space.) Then (by invari-

ance of inv), there is a sequence of jmadmissible transformations

J+1(M 2, %2, E?) and, for eaclj, an isomorphisnp;: M;* — M2

(M 1!X12+1a E12+1) ] A I |
such thaty; o am = J+1 o wj+1 pj (X1 = X2, ¢ (EY) = E? and, moreover,
invy1(a) = invy2(p;(a)) for all a € X! (cf. Remarks 9.15).

(2) ConsiderX — M and an embedding: M — N of M (as a closed
submanifold of a manifoldN). Write (Xo, Mo) = (X, M), (Yo, No) = («(X),N),
Eq = Fo =0, ando = .. Suppose we have a sequence ofxiadmissible trans-
formations W;.+1; Xj+1, Ej+1)— J+l(MJ-;)(J-,EJ-) (where eactvj.1: Mj+1 — M; is a
blowing-up ofM; with smooth centr€;) as in (1.1). It follows from our construc-
tive definition of iny that there is a sequence of imadmissible transformations
(Nj+1; Yj+1, Fj+1)— 14 (N;;Y;, Fy) and, for eachy, an embedding;: M; — N;, such
that for eachj, 73+1: Nj+1 — N; is the blowing-up of\; with centreD; = 4 (G),
tj © 0j+1 = Tj+1 0 41, Yj = (X)), Mj and F; simultaneously have only normal
crossingsy; () = {M; NH : H € F} and, moreover, iny(a) = invy (;(a))
for all a € |X;| (cf. Remarks 9.15).
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Universal embedded resolution of singularitiesGiven X — M in .- and an
invy-admissible sequence (1.1), let fnbe the extended invariant as in Remark
1.16.

ConsiderX € .- (not necessarily globally embedded). df € |X|, then
there is a local embedding|U — M at a in a manifold M of dimension
ex,a = Hxa(l) — 1; ex s is the minimal embedding dimension and any two
such minimal embeddings are locally related by an isomorphism as in Remarks
13.1 (1).Ifa € |X|, then ink(a) can be defined using any local embedding
X|U — M over a neighbourhood of a; by 13.1, ink(a) is independent of the
choice of local embedding. (In fact, ig{a) depends only orz@(,a.) SetXg =X
and leto;: X3 — X denote a blowing-up with centre a smooth jjradmissible
subspaceCy of X = X. By 13.1, ink is defined onX;, independently of a
choice of local embedding ok, and so on. In other words, the definition of
invx over an admissible sequence of blowingseyp: Xj+1 — X extends to
this context. Clearly, the analogue of Theorem 1.14 is true (where property (3)
can be understood in terms of any local embedding, or formally in terms of a
surjective homomorphism td&a from a complete regular local ring).

Suppose thgiX | is quasi-compact (or, in the case of analytic spaces Xhat
the restriction of an analytic space to a relatively compact open subset). Then the
desingularization algorithm of Theorem 1.6 (or 10.7 or 11.14, as the case may
be) applies taX: The compactness hypothesis guarantees that fakes only
finitely many values on each successive transforid.dfor any local embedding
X|U — M, the sequence of blowings-up &f|U induced by that oX is that
which is given by the proof of 1.6 applied X|U — M. By the remarks above,
over eacha € |X|, invx and the desingularization algorithm depend only on
/AXa We obtain the following theorem:

Theorem 13.2. (1) There is a finite sequence of blowingsdpi: Xj+1 — X,
where % = X, such that, for any local embeddingXX — M of X, the sequence
of blowings-upy;+1 restricted to the inverse images of U is induced by embedded
desingularization of XU in the sense of Theorem 1.6 (or Theorem 10.7 or 11.14,
as the case may be).
(2) The desingularization isiniversal in the sense that, to each X in#
satisfying the compactness hypothesis above, we associate a mosghixrh—
X such that:
() ox is a composite of a finite sequence of blowings-up as in (1).
(ii) Let X and Y be two spaces satisfying the compactness hypothesis, and let
p: XU i>Y|V be an isomorphism over open subsets U, VXof |Y| (respec-
tively). Then there is an isomorphisph: X’|a;1(U )iY’|o;1(V) such that the
diagram
X'|ox*U) £ Yoy v)
! |
X =, Y
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commutes. (The lifting’ of ¢ is necessarily unique.) In facy lifts to isomor-
phisms throughout the entire desingularization towers.

Theorem 12.2 on avoiding blowing-up resolved points can be incorporated
in 13.2.

Canonical desingularization of analytic spacesFinally, we consider desingu-
larization of an analytic spacé = (|X|, %) defined over a locally compact field

k of characteristic zero (i.ek = IR, C, or a finite extension of the fiel@, of
p-adic numbers, wherp is prime. In the latter caseX is locally a subspace

of a manifold in the sense of Serre [Se].) We assume [ais countable at
infinity. In general, of courseX cannot be desingularized by a finite sequence of
global blowings-up with smooth centres. There are two natural ways to generalize
Theorem 13.2 above:

Theorem 13.3. There is a morphismary: X’ — X such that, for any relatively
compact open subset U ¢X|, the restrictionoy y: X'lox*(U) — X|U is a
composite of a finite sequence of blowings-up as in Theorem 13.2 (1) (where the
latter is formulated using either Theorem 1.6 or 11.14 locally). Desingularization
of analytic spaces in this sense is universal (as in 13.2 (2)).

Proof. This follows from Theorem 13.2: To every relatively compact open subset
U of |X|, we associate a morphisayy: (X|U) — (X|U), whereoxy is

the composite of a finite sequence of blowings-up as in 13.2(1), so that the
universality condition (2) is satisfied. Thus,Uf C V are relative compact open
subsets ofX], the inclusionX|U — X|V lifts to (X|U) — (X|V)/, andoy is
given by the direct limit. O

The morphisnoyx of Theorem 13.3 is not defined as a composite of global
blowings-up with smooth centres. We can obtain resolution of singularities of
analytic spaces in this stronger way, but at the expense of weakening the notion
of universality:

We say that a sequence of blowings-up- )(J-+1U‘—+l>xj — ... —Xg=Xis
locally finite if all but finitely many of the blowings-up;., are trivial over any
compact subset gK|. The composite of a locally finite sequence of blowings-up
is a well-defined morphism: X’ — X.

Theorem 13.4. There is a locally finite sequence of blowingsetipi: Xj+1 — X;
with smoothinvx-admissible centres;G- X; (where X = X) such that

(1) For each j, either € C SingX; or X; is smooth and CC ;.

(2) Leto: X’ — X denote the composite of the sequence of blowings-up
Then X is smooth, and X E’ simultaneously have only normal crossings (where
E’ denotes the collection of all exceptional divisors).

(3) o is canonicalin the sense that any isomorphigmX |U =X |V, where
U and V are open subsets 0f|, lifts to an isomorphismy’: X'|c~}(U) —
X'loY(V).
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The assertions concernirigy andE’ can be understood locally, for example
as in Theorem 1.6, using an embeddiXg) — M over a relatively compact
open subset ofX|. Of course, X’ may be empty (as in 1.6); Theorem 13.4 is
a meaningful geometric desingularization theorem at least in the cas¥ tisat
geometric (Definition 10.5). Every reduced complex analytic space is geometric.
Our proof below can also be used to extend Theorem 1.10 to the non-compact
analytic case, in general.

Proof of Theorem 13.4Me will use the algorithm of Theorem 1.6 locally (over a
relatively compact open subdgdt of | X|, say), extending each centre of blowing-

up to a global analytic subspace Xfand desingularizing this subspace (using
induction on dimension) by a locally finite sequence ofiradmissible blowings-

up which are trivial ovet) . As in the proof of 1.6 (Sect. 10), we first find a locally
finite sequence of blowings-ug .1 with invx-admissible centre€; C SingX;

such that, ifo: X’ — X denotes the composite of the sequence, tKérs
smooth. Afterwards, we repeat the algorithm us{xg: si(x) > O} instead of
SingX; at every stage (as in Sect. 10) to achieve the normal crossings condition.
We will describe only the first of the two steps.

Since|X| can be exhausted by a sequence of relatively compact open subsets,
it is enough to prove the following assertion: Lt be a relatively compact
open subset ofX|. Then there is a locally finite sequence of blowingseyp:

Xj+1 — X with smooth iny-admissible centre€; C X, satisfying (3) of the
theorem as well as:

(1) EachC; C SingX;.

(2) If o: X’ — X denotes the composite of thg,;, then SingK’|c~1(U)) =
0.

To prove this assertion, consider the resolution algorithm of Theorem 1.6
applied toX|U (as in Theorem 13.2); say that

(135) o = XU)js — XU) — - — (X[U)o = X|U

is the sequence of blowings-up given by the algorithm (for the first of the two
steps; i.e., to reduce to the case that S¥jg()’ = ). We can assume that each
centre of blowing upC; is pure-dimensional (by using, for example, as each
successiveC;, the lowest-dimensional components of the maximum locus of
invy )y in Sing(X|U);, where the extended invariant fs fixed as in Remark
1.16 ). Suppose we have a (locally finite) sequence gfiagmissible blowings-
up of X satisfying (1) and (3) and restricting, oved , to part of the resolution
tower (13.5); let us say, to that part up ¥|U); (apart from blowings-up that
are trivial overU). Let 6% X% — X denote the composite of this sequence
of blowings-up ofX, so that the restrictiom?: X°(¢%)~%(U) — X|U can be
identified with the compositeX(U); — X|U in (13.5).

SetV = (¢9)~}(U). Let A denote the (finite) set of maximal valugs=
invg (a) of invy on SingK°|V), and letS := |, ,{x € SingX°|V) : invg(a) =
A}. ThenS defines a smooth closed subspacex8fV (by Remarks 10.3, as in
the proof of Theorem 1.6). For eache A, let T, denote the smallest closed
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analytic subspace ok® such that|Ty| = {x € SingX® : invg(x) > A}. (The
latter is Zariski-closed since ifjvis Zariski-semicontinuous; cf. Remark 6.14.)
Let § denote the union of the components $fof the smallest dimension
g. Let T denote the union of the components (of,. , Ty of dimensiong;

T is a well-defined closed analytic subspaceX#. Clearly, T|V = & and
Ureafx € [T|: invi(x) = A} is Zariski-open in|T].

Our aim is to desingulariz&X® = T by a locally finite sequence of iqv
admissible blowings-up ok which is trivial overV and satisfies () and (3),
such that iny is locally constant on the final (smooth) transfofthof T. Then
T’ provides a centre for a blowing-up that restricts ¥ );+1 — (X|U); in
(13.5), and the theorem follows recursively. We achieve the aim by an inductive
construction, for the purpose of which we formulate a more general problem.
(The result needed is Lemma 13.7 wkh= 1).

Consider a decreasing chain of pure-dimensional closed analytic subspaces
of X0, Xt 5 X2 5 ... o XK k > 1, such thatX!| c SingX?, dimX! < oo,
and dimX'*! < dimX',i =1,...,k — 1. Assume that eacK' is preserved by
the liftings of local isomorphisms o given by the canonicity condition an’:

X% — X. Consider a locally finite sequence of yradmissible blowings-up

(13.6) e X0 T X0 — X9 = XO
with smooth centresC; C XJ-O, where for eachi = 1,...,k and each] =
0,1,..., in+1 denotes the smallest closed analytic subspacé(j&)lf contain-

ing 07,1(%')\o;51(C;). Then, for eachj, SingXx°® > X!, X! > --- > X¥, and
X/ is pure-dimensional and dixj** < dimX', i > 1. For eachj, we define
K@) := (invx(a),Hle)a,...,ijkya), a € |X°|. (Say that*(a) < *(b) means
componentwise<.)

Lemma 13.7. There is a locally finite sequence of blowings-up (13.6) with smooth
-admissible centres;G- X* such that:

(1) For each j, G is pure-dimensional and;Gncludes no point a at whichj‘Xis
smooth andy is locally constant od)(jk|.

(2) For eachi= 0,...,k, let (X'Y denoteIiLan'. (In particular, the induced

morphismo: (X%’ — X° is the composite of the.1.) Then(X¥)’ is smooth and
(invx, Hay ., - - - Hxy ) is locally constant on(X*)'|.

(3) 0% 0 02 (X% — X satisfies the canonicity condition 13.4 (3), and e@h’

is preserved by the liftings of the local isomorphisms of X given by canonicity.

Proof. Our proof is by induction on dit¥. (The case of dimension zero is

trivial.) It is enough to prove the following assertion: Let be a relatively

compact open subset pf|, and letV = (¢%)~(U). Then there is a locally finite

sequence of blowings-up (13.6) with smoatkadmissible centre§; C )(J-k such

that (1) and (3) of the lemma hold, and (2) holds on the inverse imagyé of
Write X := (X%, X1, ..., X¥). Given a sequence (13.6), we definesipfa) :=

K@), a e |Xj°|. (In the analytic case here) it is easy to see that each term of
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/() admits a (semicoherent) codimension zero presentation; the union of these
presentations is a codimension zero presentatioff(9f Therefore, we can use
the construction of Sect. 6 to extend {py¥to an invariant in(a), provided that
the centres of blowing ug; are chosen successively to bejiga)-admissible.
Since (") includesHy« , invx is also locally constant thik| at a pointa as
in (1). J

We can use an analogue for jpwof the algorithm of Theorem 1.6 to prove
Lemma 13.7 forX|V: For eachj, let V; denote the inverse image &f in
|XJ-°|. We can take as each successive centre the smallest dimensional compo-
nents of maximum locus of ijvon YK, WhereYjk denotes the complement in
X{|V; of the smooth components of the latter on whichiinis constant. (These
components are necessarily open and closed.) We obtain a finite sequence of
blowings-up ofX°|V with smooth iny-admissible centres, satisfying the con-
ditions of the lemma foiX|V. Again we want to extend the successive centres
to global analytic subspaces and resolve their singularities (which lie outside the
V;) by the inductive assumption.

Suppose we have a locally finite sequence (13.6) gf4admissible blowings-
up of X° satisfying (1) and (3) of the lemma, and restricting oVeeto part of
the resolution tower foX |V . Write X := IiLan‘, i =0,...,k. (In particular, the

induced morphisnw,: X2 — X° is the composite of the sequence of blowings-
up.)

SetW = o, 1(V). Let A denote the (finite) set of maximal valugs= inv§ (a)
of inv§ on YX (where YX denotes the complement XX | W of the smooth
components of the latter on which fis constant), and le§ := | J,.,{x €
YK . invg(a) = A}. ThenS defines a smooth closed subspaceX¢§fw and
dimS < dimXX. For each) € A, let T, denote the smallest closed analytic
subspace oK such that|T,| = {x € X¥ : inv§(x) > A}. Let §, denote the
union of the components & of the smallest dimensiog. Let X¥** denote the
union of the components df},_, Tx of dimensiong. ThenX¢ W = §; and
Useafx € XK 1 invg(x) = A} is Zariski-open in[Xk*.

By induction on the dimension of the last spaXg™, we can assume that
Lemma 13.7 holds foX? > X! o --- o X1 The sequence of blowings-up
involved will be trivial overw, and the final transform ofX*! will be a smooth
extension ofS above on whichX is locally constant. O
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