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Summary. This article contains an elementary constructive proof of resolution of
singularities in characteristic zero. Our proof applies in particular to schemes of
finite type and to analytic spaces (so we recover the great theorems of Hironaka).
We introduce a discrete local invariant invX (a) whose maximum locus determines
a smooth centre of blowing up, leading to desingularization. To define invX , we
need only to work with a category of local-ringed spacesX = (|X|,OX ) satisfying
certain natural conditions. Ifa ∈ |X|, then invX (a) depends only onÔX,a. More
generally, invX is defined inductively after any sequence of blowings-up whose
centres have only normal crossings with respect to the exceptional divisors and lie
in the constant loci of invX (·). The paper is self-contained and includes detailed
examples. One of our goals is that the reader understand the desingularization
theorem, rather than simply “know” it is true.
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Chapter I. Introduction

This article contains an elementary constructive proof of resolution of singulari-
ties in characteristic zero.k will denote a field of characteristic zero throughout
the paper. Our proof applies to a schemeX of finite type overk, or to an analytic
spaceX over k (in the case thatk has a complete valuation); we recover, in par-
ticular, the great theorems of Hironaka [H1,2], [AHV1,2]. But our work neither
was conceived nor is written in the modern language of algebraic geometry. We
introduce a discrete local invariant invX (a) whose maximum locus determines
a centre of blowing up, leading to desingularization. To define invX , we need
only to work with a categoryA of local-ringed spacesX = (|X|,OX ) over k
satisfying certain mild conditions (Remark 1.5), although further restrictions on
A are needed for global resolution of singularities.

If a ∈ |X|, then invX (a) depends only on the completed local rinĝOX,a.
In general, invX is defined recursively over a sequence of blowings-up whose
centres have only normal crossings with respect to the exceptional divisors and lie
in the constant loci of invX . (See (1.2).) invX takes only finitely many maximum
values (at least locally). Moreover, its maximum locus has only normal crossings
and each of its local components extends to a global smooth subspace, justifying
the philosophy that “a sufficiently good local choice [of centre of blowing-up]
should globalize automatically” [BM4].

(0.1) Our desingularization algorithm applies to the following classes of
spaces:

(1) Algebraic.Schemes of finite type overk (cf. [H1]). Algebraic spaces over
k (in the sense of Artin [Ar], Knutson [Kn]). Restrictions of schemesX of finite
type overk to their k-rational points|X|k . (Such spaces might be the natural
object of study when our main interest lies in thek-rational points; e.g., for real
algebraic varieties.)

(2) Analytic. Real or complex analytic spaces (cf. [H2], [AHV1,2]).p-adic
analytic spaces in the sense of Serre [Se] or Berkovich [Ber].

(3) “Quasianalytic hypersurfaces”, defined by sheaves of principal ideals, each
locally generated by a single quasianalytic function, on quasianalytic manifolds
in the sense of E.M. Dyn’kin [D] (a class intermediate between analytic and
C∞).
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In each of the classes of (0.1), a spaceX is locally a subspace of a manifold,
or smooth space,M = (|M |,OM ). For the purpose of global desingularization, a
key property of our category of spacesA is the following:

(0.2) A manifold M in A can be covered by “regular coordinate charts”
U : the coordinates (x1, . . . , xn) on U are “regular functions” onU (i.e., each
xi ∈ OM (U )) and the partial derivatives∂|α|/∂xα = ∂α1+···+αn/∂xα1

1 · · · ∂xαn
n

make sense as transformationsOM (U ) → OM (U ). Moreover, for eacha ∈ U ,
there is an injective “Taylor series homomorphism”Ta: OM ,a → Fa[[X]] =
Fa[[X1, . . . ,Xn]], where Fa denotes the residue fieldOX,a/mX,a, such thatTa

induces an isomorphism̂OM ,a
∼=−→Fa[[X]] and Ta commutes with differentiation:

Ta ◦ (∂|α|/∂xα) = (∂|α|/∂Xα) ◦ Ta, for all α ∈ Nn. (mX,a denotes the maximal
ideal of OX,a.)

In Sect. 3 below, we will give a more precise list of the properties of our
category of spacesA that we use to prove global desingularization. As an
application of our theorem, we show that desingularization (in the hypersurface
case) implies L´ ojasiewicz’s inequalities (Sect. 2). (These inequalities seem to be
new for quasianalytic functions in dimension> 2.) Our invariant can also be
applied to desingularization of “quasi-Noetherian spaces”, generalizing Pfaffian
varieties in the sense of Khovanskii.

Our results here were announced in [BM6], and extend techniques introduced
in [BM3] and [BM4]. When we began thinking about this subject more than fif-
teen years ago, we were motivated by a simple desire to understand how to
resolve singularities. One of our goals is that the reader understand the desin-
gularization theorem, rather than simply “know” it is true. We believe that the
invariant invX is of interest as a local measure of singularity, beyond desingular-
ization itself. Significant general features of this work in comparison to previous
published treatments include: (i) Our desingularization theorems are canonical
(cf. Remark 1.16 ff. and Sect. 13). (ii) We isolate local properties of an invariant
(Theorem 1.14) from which globalization is automatic (Remark 1.15 ff. or 10.3
ff.). (iii) Our proof in the case of a hypersurface (a space defined locally by a
single equation) does not involve passing to higher codimension (as in [H1]).

Our notion of “presentation” (Sects. 1,4) has much in common with Hiron-
aka’s idea of “strong local equivalence” of idealistic exponents [H3], although
the analogy with [H3] does not seem to go beyond “presentation of the Hilbert-
Samuel function” (in the language of this article). Our proof of resolution of
singularities combines the uniformization algorithm of [BM3, Sect. 4] with the
way we structure the notion of presentation. Essential points include the way we
encode the history of the resolution process, originating in [BM3, Sect. 4] (and
used in a similar way in [V1]), and the introduction of “exceptional blowings-up”
(Sect. 4). We use these notions to develop a calculus for resolving singularities
(cf. Example 2.1). The idea is to introduce new variables into the equations of
a variety (by taking products with lines and test blowings-up) in a way that
isolates invariant “blocks” representing important geometric features (cf. 1.11,
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3.25). The idea of using test blowings-up to distinguish invariants occurs in [H3]
(as Villamayor pointed out to us in 1990), as well as in [Ab2] (cf. [Li]).

Our “presentation” is by “regular functions” (functions in the class consid-
ered). Lack of such a presentation is a source of difficulty in previous treatments
of desingularization. Regularity makes our algorithm work in the general context
of the paper, for naive reasons. Ideas important to the general case (Ch. III) are
isolation of the division properties of a local ideal that survive locally throughout
the Samuel stratum (Sect. 7.2), an elementary stabilization theorem for homoge-
neous polynomials (Sect. 8), and an “implicit differention” property (referred to
in 1.19, but realized a little differently in Sect. 9).

Notwithstanding the comparisons made above, we admit having not fully
understood any other proof of desingularization. At the same time, our debt to
the philosophy of Hironaka is greater than can be measured by precise refer-
ences to his results. For a guide to the literature before 1976, we recommend
Hironaka’s bibliographical commentary in [H3]; our references include the more
recent publications that we know of. Mark Spivakovsky has announced a proof
of desingularization of arbitrary excellent schemes [Sp]. (A weaker theorem for
any characteristic has been proved by de Jong [dJ].)

We are happy to thank Christof Waltinger for reading the manuscript; his
inquiring about our algorithm in examples made us aware of an error in an
earlier version of Sect. 12.

Before formulating our results in a general way (Sect. 1), it might be worth
describing some of the ideas: LetX denote a hypersurface (defined locally by
a single equationf (x) = 0) in a manifoldM . Let a ∈ X and letµa(f ) denote
the order of vanishing off at a; say d = µa(f ). In this sketch, let us consider
X to be nonsingularat a if f = zd (in germs ata; necessarily,µa(z) = 1).
In general, we can choose coordinatesx = (x1, . . . , xn) such that∂df /∂xd

n /= 0
in a neighbourhood ofa; then the equation (∂d−1f /∂xd−1

n )(x) = 0 defines a
submanifoldN of codimension 1 (in this neighbourhood); cf. Sect. 3. Letcq

be the restriction toN of ∂qf /∂xq
n , 0 ≤ q ≤ d − 2. (For example, iff (x) =

c0(x̃)+c1(x̃)xn + · · ·+cd−1(x̃)xd−1
n +xd

n , wherex̃ = (x1, . . . , xn−1), and we assume
by completing thed’th power thatcd−1 ≡ 0, thenN is given byxn = 0 and the
coefficientscq have the meaning above.) Thecq are regular functions onN , as
in (0.2).

Let S(f ,d) denote the “equimultiple locus”{x : µx(f ) = d}. It is easy to see
that S(f ,d) = SH , whereSH := {x ∈ N : µxcq ≥ d − q, q = 0, . . . , d − 2} and
H := {(cq, d−q)}. X is nonsingular ata if and only if all cq = 0 (neara); i.e.,
S(f ,d) = N .

Consider the effect of a blowing-upσ with smooth centreC ⊂ S(f ,d) (cf.
Sect. 3).X lifts to a hypersurfaceX ′ (the “strict transform” ofX), defined by
f ′(y) := y−d

exc f
(
σ(y)

)
, whereyexc denotes the “exceptional divisor” (i.e., the “ex-

ceptional hypersurface”H = σ−1(C) is given byyexc = 0). The corresponding
transformation of coefficients is

(0.3) c′q = y−(d−q)
exc cq ◦ σ, 0≤ q ≤ d − 2,
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as functions (strictly speaking, defined locally up to an invertible factor), on the
strict transformN ′ of N ; clearly σ(N ′) ⊂ N . The formula for strict transform
shows that ifa′ ∈ σ−1(a), thenµa′ (f ′) ≤ d, and if µa′ (f ′) = d then a′ ∈ N ′

andS(f ′,d) = SH ′ , whereH ′ := {(c′q, d − q)} (cf. 5.1 and 4.12). Likewise after
a finite sequence of blowings-up with centres in the equimultiple loci of the
successive strict transforms.

Suppose, for example, that

(0.4) cq(x)
d!

d−q = (xΩ)d!c∗q (x), 0≤ q ≤ d − 2,

where Ω = (Ω1, . . . , Ωn−1) and eachd!Ωi is a nonnegative integer,xΩ :=

xΩ1
1 · · · xΩn−1

n−1 (with respect to coordinates (x1, . . . , xn−1) of N ) and somec∗q (a) /=
0. ((0.4) reflects the transformation law (0.3);d! is used to factor with allc∗q
regular. We will writed(a) = d, Ω(a) = Ω.) ThenS(f ,d) = {x ∈ N : µxxΩ ≥ 1}.
So S(f ,d) =

⋃
I

ZI , whereZI := {x ∈ N : xj = 0 if j ∈ I } and I runs over the

minimal subsets of{1, . . . , n − 1} such that
∑
j∈I

Ωj ≥ 1; i.e., over the subsets of

{1, . . . , n − 1} such that

0 ≤
∑
j∈I

Ωj − 1 < Ωi , for all i ∈ I .

Suppose thatσ is the blowing-up with centreC = ZI , for some suchI . If
a′ ∈ σ−1(a) andµa′ (f ′) = d, thena′ ∈ N ′; in this case,a′ lies in a coordinate
chart forN ′ in whichσ has the following form, for somei ∈ I : xi = yi , xj = yi yj

if j ∈ I \{i }, andxj = yj if j 6∈ I . Then each (c′q)d!/(d−q) = (yΩ
′
)d!c∗q ◦ σ, where

Ω′j = Ωj if j /= i , andΩ′i =
∑
j∈I

Ωj − 1 < Ωi . Since 1≤ |Ω′| < |Ω|, where

|Ω| := Ω1 + · · · + Ωn−1, d(a′) < d(a) after at mostd!|Ω(a)| such blowings-up
(cf. proof of Theorem 1.14 in Sect. 6).

The question then is whether we can reduce to the hypothesis (0.4) by induc-
tion on dimension, replacing (f , d) in some sense byH = {(cq, d − q)} on N .
To set up the induction, we would have to consider from the start a collection
F = {(f , µf )} rather than a single pair (f , d). (A generalX is, in any case,
defined by several equations; cf. Ch. III.) Moreover, the transformation law (0.3)
is not strict transform, so we would have to reformulate the original problem
to not only desingularizef , but also make its “total transform” (its composite
with the sequence of blowings-up) normal crossings (cf. (1.1) ff.). To this end,
suppose thatf actually represents the strict transform of our original function at
some point in the history of the blowings-up involved, say where the order ata
first becomesd. (We are following the transforms of the function at a sequence
of points “a” over some original point.) Suppose there ares = s(a) accumu-
lated exceptional hypersurfacesHp passing througha; say Hp ∩ N is defined
on N by an equationbp(x) = 0, 1 ≤ p ≤ s. (Eachµa(bp) ≥ 1.) The trans-
formation law for thebp analogous to (0.3) isb′p = y−1

excbp ◦ σ. Suppose now
that in (0.4) we also havebp(x)d! = (xΩ)d!b∗p (x), p = 1, . . . , s (and assume that
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either somec∗q (a) /= 0 or someb∗p (a) /= 0). Then the argument above shows
that

(
d(a′), s(a′)

) ≤ (d(a), s(a)
)

(with respect to the lexicographic ordering of
pairs), and that if

(
d(a′), s(a′)

)
=
(
d(a), s(a)

)
then 1≤ |Ω(a′)| < |Ω(a)|. (s(a′)

counts the exceptional divisorsH ′p passing througha.)
The induction on dimension can be realized in various ways. In this arti-

cle, we repeat our construction in increasing codimension to obtain invX (a) =(
ν1(a), s1(a); ν2(a), . . .

)
such that

(
ν1(a), s1(a)

)
=
(
d(a), s(a)

)
. (We recommend

following the construction of invX on pp. 13-14 in parallel with Example 2.1.)
SinvX (a) := {x : invX (x) = invX (a)} has the form{x ∈ N : µxxΩ ≥ 1} where

N is a submanifold (of codimensiont , say),xΩ = xΩ1
1 · · · xΩn−t

n−t and eachΩi /= 0
only if xi is an exceptional divisor. ThusSinvX (a) =

⋃
ZI where eachZI is the

intersection ofSinvX (a) and all exceptional hypersurfaces containingZI . This lo-
cal property implies each component of the maximum locus of invX is a global
submanifold (Theorem 1.14, Remark 1.15. The invariantµX (a) of 1.14 corre-
sponds to|Ω(a)| above.) Choosing a component of the maximum locus of invX

as each successive centre of blowing up, we get the desingularization theorem
1.6 (and its generalizations in Ch. IV). In the language above:Theorem. There
is a mappingϕ: M ′ → M realized as a composite of blowings-up with smooth
centres such thatϕ is an isomorphism outside the singularities of X , the strict
transform X′ is smooth, and(detdϕ) · (f ◦ ϕ) has only normal crossings. (dϕ is
the Jacobian ofϕ.)

The argument above, with far simpler versions of induction as in [BM3,
Sect. 4] or [BM4], gives the same conclusion, but withϕ a composite of map-
pings that are either blowings-up with smooth centres or surjections of the form∐
j

Uj →
⋃
j

Uj , where the latter is a locally finite open covering of a manifold

and
∐

means disjoint union.

1. An invariant for desingularization

Main results. Our invariant invX (a) is defined recursively over a sequence of
blowings-up (or local blowings-up as in Sect. 4). LetX denote a space (as above)
which is embedded in a manifold (smooth space)M . Consider a sequence of
transformations

(1.1)
−→ Mj +1

σj +1−→ Mj −→ · · · −→ M1
σ1−→ M0 = M

Xj +1 Xj X1 X0 = X
Ej +1 Ej E1 E0 = ∅

where, for eachj , σj +1: Mj +1 → Mj denotes a blowing-up (or local blowing-
up) with smooth centreCj ⊂ Mj , Xj +1 is the strict transform ofXj by σj (see
Sect. 3) andEj +1 denotes the set of exceptional hypersurfaces. (Ej +1 is the set
of strict transforms of allH ∈ Ej , together withσ−1

j +1(Cj ). When convenient, we
will also useEj to denote the union of the hypersurfacesH in Ej .) If a ∈ Mj ,
we setE(a) = {H ∈ Ej : a ∈ H }. (Throughout the article, by a point we
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mean a closed point (e.g., in the case of schemes). We adopt this convention
for simplicity of exposition. Of course it suffices for the treatment of spaces in
which closed points are dense; for example, schemes of finite type.)

Roughly speaking, the goal of “embedded resolution of singularities” is to
find a finite sequence of blowings-up (1.1) (or a locally finite sequence in the
case of noncompact analytic spaces) such that: IfX ′ andE′ denote the final strict
transform ofX and the final exceptional set (respectively), and ifσ: M ′ → M
denotes the composite of the sequence of blowings-up, then (1)X ′ is smooth; (2)
E′ = σ−1(SingX) (σ is an isomorphism outsideE′); (3) X ′ andE′ simultaneously
have only normal crossings.

SingX means the set of singular points ofX. The condition (3) means that
every point ofM ′ admits a coordinate neighbourhood in whichX ′ is a coordinate
subspace and each hypersurfaceH ∈ E′ is a coordinate hypersurface.

Consider a tower of transformations (1.1). Our invariant invX (a), a ∈ Mj ,
j = 0, 1, . . ., will be defined by induction onj , provided that the centresCi ,
i < j , areadmissible(or invX -admissible) in the sense that:

(1.2) (1) Ci andEi simultaneously have only normal crossings;
(2) invX (·) is locally constant onCi .

The condition (1.2) (1) guarantees thatEi +1 is a collection of smooth hy-
persurfaces having only normal crossings. The notation invX (a), wherea ∈ Mj ,
indicates a dependence on the original spaceX and not merely onXj . In fact,
invX (a), a ∈ Mj , will be invariant under local isomorphisms ofXj which pre-
serveE(a) and certain subcollectionsEr (a). (We take theEr (a) to encode the
history of the resolution process, as in “Presentation of the invariant” below in
this section.) We can think of the desingularization algorithm as follows:X ⊂ M
determines invX (a), a ∈ M , and thus the first admissible centre of blowing-up
C = C0; then invX (a), a ∈ M1, is defined and determinesC1, etc. The exceptional
hypersurfaces serve as “global coordinate subspaces”.

We can allow certain options in the definition of invX , but at this point we
fix one definition in order to be concrete. invX (a), a ∈ Mj , will be a “word”,

invX (a) =
(
HXj ,a, s1(a); ν2(a), s2(a); . . . , st (a); νt+1(a)

)
,

beginning with theHilbert-Samuel function HXj ,a; i.e., the function

HXj ,a(`) = dimk

OXj ,a

m`+1
Xj ,a

, ` ∈ N ,

where mXj ,a
denotes the maximal ideal ofOXj ,a. (In the case of schemes, we

would replace dimk by length or dimIFa with respect to any embeddingFa ↪→
OXj ,a/m`+1

Xj ,a
, whereFa denotes the residue fieldOXj ,a/mXj ,a

of a.)

Remarks 1.3. HXj ,a(`), for ` large enough, coincides with a polynomial in` of
degree dimaXj . (See Corollary 3.20.)HXj ,a(1)− HXj ,a(0) = eXj ,a is the minimal
embedding dimension ofXj at a. (Thus a ∈ SingXj if and only if eXj ,a >
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dimaXj .) If a 6∈ SingXj , then HXj ,a(`) =

(
e + `

e

)
for all `, wheree = eXj ,a =

dimaXj . If Xj is a hypersurface and dimaMj = n, then

HXj ,a(`) =


(

n + `

n

)
, ` < νXj ,a,(

n + `

n

)
−
(

n + `− νXj ,a

n

)
, ` ≥ νXj ,a,

whereνXj ,a is the order of Xj at a. (νXj ,a = max{ν : IXj ,a ⊂ mν
Mj ,a

}, where
IXj ,a is the ideal ofXj at a.) In this case, we can therefore replaceHXj ,a in the
definition of invX (a) by ν1(a) = νXj ,a.

The entriessr (a) of invX (a) are nonnegative integers reflecting the history
of the accumulating exceptional hypersurfaces

(
sr (a) = #Er (a)

)
, and theνr (a),

r ≥ 2, are “multiplicities” of “higher-order terms” of the equations ofXj at
a; see “Presentation of the invariant” below.ν2(a), . . . , νt (a) are quotients of
positive integers whose denominators are bounded in terms of the previous part of
invX (a). (More precisely,er−1!νr (a) ∈ N, r = 2, . . . , t , wheree1 is the smallest
integer k such thatHXj ,a(`) coincides with a polynomial if̀ ≥ k, and er =
max{er−1!, er−1!νr (a)}.) The final entryνt+1(a) = 0 or∞, andt ≤ n = dimaMj .
(The successive pairs

(
νr (a), sr (a)

)
can be defined inductively using functions of

n− r + 1 variables, so thatt ≤ n by exhaustion of variables.) (In [BM3, Sect. 4]
and [BM4, Sect. 3], the notation (d, r ) is used for (ν1, s1).)

Example 1.4.Let X ⊂ kn denote the hypersurfacexd1
1 +xd2

2 + · · ·+xdt
t = 0, where

2≤ d1 ≤ d2 ≤ · · · ≤ dt , t ≤ n. Then

invX (0) =

(
d1, 0;

d2

d1
, 0; · · · ; dt

dt−1
, 0; ∞

)
.

(This is invX (0) at the origin 0 ofkn in “year zero”; i.e., before any blowings-up.)

Remark 1.5. To define invX , we need only work with a categoryA of local-
ringed spacesX = (|X|,OX ) over k such that, for eacha ∈ |X|: (1) The natural
homomorphismOX,a → ÔX,a into the completionÔX,a := lim← OX,a/mk+1

X,a is

injective. (2) (The residue fieldFa := OX,a/mX,a is included inÔX,a) and n =
dimIFa mX,a/m2

X,a <∞.

If a ∈ |X|, then invX (a) depends only onÔX,a. More generally, invX (·)
is defined recursively over a sequence of formal local blowings-up,ÔX,a =

ÔX0,a0

σ∗1−→ÔX1,a1 −→· · · σ∗j−→ÔXj ,aj −→· · ·, which are “admissible” ((1.2)). For

each j , invX (aj ) depends only onÔXj ,aj and theEr (a), as above. There is an

ideal ÎSj of ÔXj ,aj corresponding to a formal “infinitesimal locus”Sj = SinvX (aj )
of points x ∈ |Xj | such that invX (x) = invX (aj ); Sj has only normal cross-
ings. If we choose any component ofSj as the centre ofσ∗j +1, successively for
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j = 0, 1, . . . , then we get an admissible sequence of formal local blowings-up
leading to desingularization of̂OX,a. In order that the algorithm apply toOX,a, we

need to impose conditions on our categoryA to guarantee that̂ISj is generated
by an idealISj ⊂ OXj ,aj , andSj = V (ISj ), whereV (ISj ) = {x ∈ |Xj | : f (x) = 0,
for all f ∈ ISj } (as a germ ata).

To obtain global desingularization, we need to further restrictA so that invX ,

defined over an admissible sequence of blowings-up· · · −→Xj
σj−→· · ·−→X1

σ1−→
X0, takes only finitely many maximal values on eachXj (at least locally), and its
maximum locus coincides in germs at any pointaj with SinvX (aj ) as above. See
also (3.9).

The simplest form of our embedded desingularization theorem is the follow-
ing:

Theorem 1.6 (cf. [H1, Main Theorem I]).Suppose that|X| is quasi-compact.
Then there is a finite sequence of blowings-up (1.1) with smoothinvX-admissible
centers Cj such that:

(1) For each j , either Cj ⊂ SingXj or Xj is smooth and Cj ⊂ Xj ∩ Ej .
(2) Let X′ and E′ denote the final strict transform of X and exceptional set,

respectively. Then X′ is smooth and X′,E′ simultaneously have only normal cross-
ings.

(“Quasi-compact” means every open covering has a finite subcovering; “com-
pact” means “Hausdorff and quasi-compact”.) The conclusion of 1.6 holds, more
generally, forX|U , whereU is any relatively quasi-compact open subset of|X|.
If X is a non-compact analytic space (for example, overR or C; see also Theo-
rem 13.3), Theorem 1.6 holds with a locally finite sequence of blowings-up. Ifσ
is the composite of the sequence of blowings-upσj , thenE′ is the critical locus
of σ, andE′ = σ−1(SingX).

Remarks 1.7.(1) Our proof of Theorem 1.6 requires the hypotheses that, forX
in our class of spaces, SingX is closed andHX,· is upper-semicontinuous, both
with respect to the Zariski topology of|X| (the topology whose closed sets are
of the form |Y |, for any closed subspaceY of X; see Sect. 3.) We give a very
simple proof of semicontinuity ofHX,· in Chapter III (Theorem 9.2; cf. [Ben]),
for X in any of the classes of (0.1) (1), (2); in these classes,OX is a coherent
sheaf of rings, and it follows that SingX is Zariski-closed (Proposition 10.1).
Both hypotheses above are clear in the hypersurface case, for all classes of (0.1).
(See [GD] for definitions of sheaf-theoretic terms like “coherent”.)

(2) Theorem 1.6 resolves the singularities ofX in a meaningful geometric
sense provided RegX := |X|\SingX is Zariski-dense in|X|. We will say X is a
geometric spaceif RegX is Zariski-dense in|X|. For example,reducedcomplex
analytic spaces or schemes of finite type are geometric. SupposeX is a geo-
metric space. Ifσ: M ′ → M is a blowing-up with smooth centreC , we define
the geometric strict transform X′′ of X by σ as the smallest closed subspaceZ
of σ−1(X) such that|Z | ⊃ |σ−1(X)|\|σ−1(C)|. (The strict and geometric strict
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transforms coincide for reduced schemes or complex analytic spaces.) We can re-
formulate Theorem 1.6 to resolve the singularities ofX by transformations which
preserve the class of geometric spaces (Sect. 10): “geometric strict transform”
can be used throughout the desingularization algorithm because, ifX ′ denotes
the strict transform ofX, thenX ′′ ⊂ X ′ and, if a′ ∈ X ′′, thenHX′′,a′ ≤ HX′,a′
with equality if and only ifX ′′ = X ′ in germs ata′ (cf. 1.14 below).

(3) In the categories of (0.1) (1) and (2), algebraic techniques make it possible
to use our desingularization algorithm to prove theorems more precise than 1.6;
for example, for spaces that are not necessarily reduced (Sect. 11). Theorem 1.6
does not exclude the possibility of blowing-up “resolved points”; i.e., a centre
of blowing-up Cj may include points whereXj is smooth and has only normal
crossings with respect toEj . (See Example 2.3.) We can modify invX to avoid
blowing up resolved points; see Sect. 12.

Our desingularization theorems are presented in Chapter IV. (To be brief, we
concentrate in this introduction on an embedded spaceX ↪→ M ; see Theorem
13.2 for universal “embedded desingularization” of an abstract spaceX.) We give
a constructive definition of invX in Chapter II. (The main idea is presented later
in this introduction.)

Remark 1.8. Transforming an ideal to normal crossings(cf. [H1, Main Theo-
rem II]): Suppose thatI ⊂ OM is a sheaf of ideals of finite type. Letν1(a)
denote theorder νI ,a of I at a ∈ M . (νI ,a := max{ν : Ia ⊂ mν

M ,a}.) If
σ : M ′ → M is a local blowing-up with smooth centreC , we can define aweak
transformI ′ ⊂ OM ′ of I by σ as follows: For alla′ ∈ M ′, I ′a′ is the ideal
generated byy−νexc f ◦σ, f ∈ Iσ(a′), whereν denotes the generic value ofν1(a) on
C (and yexc is a local generator of the ideal ofσ−1(C) at a′). In this context,
our construction can be used to extend inv1/2(·) = ν1(·) to an invariant invI (·)
which is defined inductively over a sequence of transformations

(1.9)
−→ Mj +1

σj +1−→ Mj −→ · · · −→ M1
σ1−→ M0 = M

Ej +1 Ej E1 E0 = ∅
Ij +1 Ij I1 I0 = I

where theσj +1 are local blowings-up whose centres are invI -admissible(cf.
(1.2)), Ej +1 is the set of exceptional hypersurfaces, and eachIj +1 is the weak
transform ofIj . (See 1.18.) Using invI , our algorithm gives the following the-
orem (which is a consequence of Theorem 1.6 in the case thatI = IX is the
ideal sheaf of a hypersurfaceX).

Theorem 1.10.Suppose that|M | is quasi-compact. Then there is a finite sequence
(1.9) of blowings-upσj , j = 1, . . . , k, with smoothinvI -admissible centres, such
that Ik = OMk andσ−1(I ) := σ∗(I ) ·OMk is a normal-crossings divisor, where
σ : Mk → M denotes the composite of theσj . (“Normal-crossings divisor”
means a principal ideal of finite type, generated locally by a monomial in suitable
coordinates.)
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It follows that if Jσ ⊂ OMk denotes the ideal generated by the Jacobian
determinant ofσ, thenJσ · σ−1(I ) is a normal-crossings divisor.

Remark 1.11. In year zero,there is a straightforward geometric definition
of invX : Assume thatX is a hypersurface. (The following construction will
be extended to the general case in Remark 3.25, using the “diagram of ini-
tial exponents”.) Locally,X is defined by a single equationf = 0. Consider
the Taylor expansionf (x) =

∑
α∈Nn fαxα of f at a point a, for a given co-

ordinate system x= (x1, . . . , xn). (Say x(a) = 0. If α ∈ Nn, then xα de-
notes the monomialxα1

1 · · · xαn
n . N denotes the nonnegative integers.) We as-

sociate to the Taylor expansion off at a its Newton diagramor support
Q(a) = {α ∈ Nn : fα /= 0}. Let us order the hyperplanesH in Rn lexico-
graphically with respect tod = (d1, . . . , dn), where thedi are the intersections
of H with the coordinate axes, listed so thatd1 ≤ d2 ≤ · · · ≤ dn ≤ ∞. We
regardQ(a) as a subset of the positive orthant ofRn, and letd(x) = (d1, . . . , dn)
denote the maximum order of a hyperplaneH which lies underQ(a) (in the
sense that for each (α1, . . . , αn) ∈ Q(a), there exists (β1, . . . , βn) ∈ H such that
βi ≤ αi for eachi ); in particular, 0< d1 <∞. Of course,d(x) depends on the
coordinate systemx = (x1, . . . , xn). Set d = supcoordinate

systemsx
d(x), d = (d1, . . . , dn).

Then

invX (0) =

(
d1, 0;

d2

d1
, 0; · · · ; dt

dt−1
, 0; ∞

)
,

wheredt is the last finitedi . It is natural to ask whetherd = supd(x) is realized by
a particular coordinate systemx. (In Example 1.4 above, the supremum is realized
by the given coordinates.) The construction we use to define invX in Chapter II
(or below in this section) gives a positive answer. Moreover, beginning with any
coordinate system, we find an explicit change of variables to obtain coordinates
x = (x1, . . . , xn) in which d(x) = d; in these coordinates, the centre of the first
blowing-up in our resolution algorithm isx1 = · · · = xt = 0 (where the coordinates
are indexed so thatdi corresponds toxi , for eachi ). Consider another coordinate
systemy = (y1, . . . , yn) in which the supremumd is realized (indexed again so
that di corresponds toyi , for eachi ). Write y = ϕ(x), ϕ = (ϕ1, . . . , ϕn), for the
coordinate transformation. Then, usingwi = d1/di as weights for thexi and yi ,
i = 1, . . . , n (cf. Remark 3.25), the weighted initial forms off with respect to
x and y are obtained one from the other by the substitutiony = ϕw(x), where
eachyi = ϕw,i (x) is the weighted homogeneous part of orderwi in the Taylor
expansion ofyi = ϕi (x). (This remark will not be used here; we plan to pursue
it elsewhere.)

1.12. A combinatorial analogue of resolution of singularities (cf. toroidal
desingularization). Let M be a finite simplicial complex. We define the
blowing-upσΣ of M along a simplexΣ as the smallest simplicial subdivi-
sion M′ of M which includes the barycentre ofΣ. If V (M) denotes the set
of vertices (0-simplices){H1, . . . ,Hd} of M, thenV (M′) = {H ′1, . . . ,H

′
d+1},

whereH ′k = Hk , k ≤ d, andH ′d+1 is the barycentre ofΣ. If D is a functionD :
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V (M) → Z, we define the transformD ′ of D by σΣ as D ′: V (M′) → Z,
where D ′(H ′k) = D(Hk), k ≤ d, and D ′(H ′d+1) =

∑
Hk∈V (Σ)

D(Hk). If D1,D2:

V (M) → Z, we say thatD1 ≤ D2 if D1(Hk) ≤ D2(Hk) for all k. Theorem. Sup-
pose Dj : V (M) → Z, j = 1, . . . , s. Then there is a finite sequence of simplicial
blowings-up ofM after which the transforms D′j of the Dj are locally totally
ordered as follows: LetM′ denote the final transform ofM. Then, for every
simplexΣ of M′, there is a permutation(j1, . . . , js) of the indices j such that
D ′j1|V (Σ) ≤ D ′j2|V (Σ) ≤ · · · ≤ D ′js|V (Σ).

A finite simplicial complex can be associated to a system of smooth hyper-
surfaces with only normal crossings in a smooth ambient space. LetM be a man-
ifold and letE denote a finite collection of smooth hypersurfaces{H1, . . . ,Hd}
in M having only normal crossings. We associate toE the simplicial complex
M = M(E) whose vertices correspond to theHk and whose simplicesΣ corre-
spond to nonempty intersectionsHk1 ∩ · · · ∩Hkq . Every finite simplicial complex
can be realized in this way. Say that a blowing-upσ: M ′ → M is admissibleif
its centreC is an intersection of hypersurfaces inE; i.e., C = C(Σ) corresponds
to a simplexΣ of M. The system of hypersurfacesE transforms underσ to
E′ = {H ′1, . . . ,H

′
d+1}, whereH ′k denotes the strict transform ofHk , k ≤ d, and

H ′d+1 = σ−1(C). It is easy to see thatM′ = M(E′) is the simplicial blowing-

up σΣ of M. A formal divisor D =
d∑

k=1
nk [Hk ] (where eachnk ∈ Z) on M

corresponds to the functionD(Hk) = nk on V (M). The (total) transform of

D =
∑

nk [Hk ] by σ is defined asD ′ =
d∑

k=1
nk [H ′k ] +

( ∑
Hk∈V (Σ)

nk
)
[H ′d+1]. Clearly,

this is the same as the combinatorial transformation rule above. The preceding
theorem is equivalent to the following “combinatorial desingularization theo-
rem”. (Compare to the role played by Lemma 4.7 in [BM3, Sect. 4]. See also
Lemma 12.8.)

Theorem 1.13. Let M be a manifold and E= {H1, . . . ,Hd} a finite collection
of smooth hypersurfaces in M having only normal crossings. Suppose we have
a system of formal divisors Dj =

∑
njk [Hk ] (where each njk ∈ Z), j = 1, . . . , s.

Then there is a finite sequence of admissible blowings-up of M after which the
transforms D′j of the Dj are locally totally ordered in the following sense: Let
M ′,E′ denote the final transforms of M,E. Then, for each a′ ∈ M ′, there is
a permutation(j1, . . . , js) of the indices j such that D′j1(H ) ≤ D ′j2(H ) ≤ · · · ≤
D ′js(H ) for all H ∈ E′ with a′ ∈ H .

Proof . It is enough to considers = 2. Our proof is a simple parallel of the
construction in Chapter II (and Theorem 1.14). Leta ∈ M . Set ν1(a) :=
min{∑

H3a
D1(H ),

∑
H3a

D2(H )} − ∑
H3a

min{D1(H ),D2(H )}, and inv(a) := ν1(a).

(“s1(a)” is unneeded; “ν2(a)” = 0.) Put

µ2(a) := max
{∑

H3a

D1(H ),
∑
H3a

D2(H )
}
−
∑
H3a

min{D1(H ),D2(H )} .
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Let Sa denote (the germ ata of) {x ∈ M : ν1(x) = ν1(a)}. Then the irreducible
componentsZ of Sa are of the formZ = ZI :=

⋂
H∈I

H for certain I ⊂ E (as

germs ata) (and Z = Sa ∩
⋂

H⊃Z
H ; cf. Theorem 1.14 (3)): To be explicit, say

that ν1(a) =
∑

H3a

(
D1(H ) − D0(H )

)
, whereD0(H ) := min{D1(H ),D2(H )}. Set

Jk(a) := {H : H 3 a andDk(H ) > D0(H )}, k = 1, 2. Then eachZ = ZI , where
I = J1(a) ∪ J and J is a subset ofJ2(a) that is minimal with respect to the
property that

∑
H∈J

(
D2(H ) − D0(H )

) ≥ ν1(a). (In particular, if µ2(a) = ν1(a),

thenSa = ZI , whereI = J1(a) ∪ J2(a).)

Now letν1 be the maximum value of the invariant inv(a), a ∈ M , and letS :=
{x ∈ M : ν1(x) = ν1}. Then the irreducible components ofS are theZI above,
for all a ∈ S. Write µ2(I ) := min

a∈ZI
µ2(a); thenµ2(I ) = max{∑

H∈I
(D1(H )−D0(H )),∑

H∈I
(D2(H ) − D0(H ))} ≥ ν1. Let σ be the blowing-up with centre one of these

componentsZI . We claim that
(
ν1(b);µ2(b)

)
<
(
ν1(σ(b));µ2(σ(b))

)
, for all

b ∈ σ−1(ZI ) (so the theorem follows by induction). Indeed, by the minimality
property above,I = J1 ∪ J2, where Jk := {H ∈ I : Dk(H ) > D0(H )}, k =
1, 2. Say thatν1 =

∑
H∈I

(
D1(H ) − D0(H )

)
. Let a ∈ ZI . If ν1 < µ2(I ), then

J1 = J1(a); if ν1 = µ2(I ), then we can assume the same is true by interchanging
k = 1 and 2 if necessary. In any case, 0≤ ∑

H∈I

(
D2(H ) − D0(H )

) − ν1 <

D2(H∗) − D0(H∗) for every H∗ ∈ J2. Let b ∈ HI := σ−1(ZI ) and a = σ(b).
Then D1(HI ) :=

∑
H∈I

D1(H ) ≤ ∑
H∈I

D2(H ) =: D2(HI ); henceD0(HI ) = D1(HI ),

and D2(HI ) − D0(HI ) < D2(H∗) − D0(H∗) for every H∗ ∈ J2. If H ∈ E, let
H ′ be the strict transform ofH . Since D1(HI ) − D0(HI ) = 0, it follows that
ν1(b) ≤ ν1(a) and ν1(b) = ν1(a) if and only if b ∈ ⋂

H∈J1

H ′ and µ2(b) =∑
H3b

(
D2(H ) − D0(H )

) ≥ ∑
H3b

(
D1(H ) − D0(H )

)
= ν1(b) (in particular,b /∈ H ′∗,

for someH∗ ∈ J2). But µ2(a) =
∑

H3a

(
D2(H ) − D0(H )

)
sinceν1 = ν1(a) and

J1 = J1(a). Therefore,ν1(b) = ν1(a) implies thatµ2(b) ≤ µ2(a) − (D2(H∗) −
D0(H∗)

)
+
(
D2(HI ) − D0(HI )

)
< µ2(a). (Sinceν1(b) ≤ µ2(b), it follows that

ν1(b) < ν1(a) if µ2(a) = ν1(a).) �

Fundamental properties of invX. Let X denote a closed subspace of a smooth
spaceM , as before. Our desingularization theorems will follow from four key
properties satisfied by invX , for any admissible sequence of blowings-up (Theo-
rem 1.14).

A function τ : |M | → Σ, whereΣ is a partially-ordered set, will be called
Zariski-semicontinuousif τ locally takes only finitely many values and, for all
σ ∈ Σ, Sσ := {x ∈ |M | : τ (x) ≥ σ} is Zariski-closed. (See Lemma 3.10,
Definition 3.11.)
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The functionτ (·) = HX,· takes values in the setNN of functions fromN
to itself. NN is partially ordered as follows: IfH1,H2 ∈ NN, then H1 < H2 if
H1(`) ≤ H2(`) for all `, and H1(`) < H2(`) for some`. We can then use the
lexicographic ordering of words like invX (a) to obtain a partially-ordered set in
which invX (·) takes values.

Theorem 1.14. Consider anyinvX-admissible sequence of local blowings-up
(1.1). The following properties hold.

(1) Semicontinuity.(i) For each j , every point of|Mj | admits a neighbourhood
U such thatinvX takes only finitely many values in U and, for all a∈ U , {x ∈
U : invX (x) ≤ invX (a)} is Zariski-open in

∣∣Mj |U
∣∣. (ii) invX is “infinitesimally

upper-semicontinuous” in the sense thatinvX (a) ≤ invX
(
σj (a)

)
for all a ∈ Mj ,

j ≥ 1.
(2) Stabilization.Given aj ∈ Mj such that aj = σj +1(aj +1), j = 0, 1, 2, . . ., there

exists j0 such thatinvX (aj ) = invX (aj +1) when j≥ j0. (In fact, any nonincreasing
sequence in the value set ofinvX stabilizes.)

(3) Let a∈ Mj and let SX (a) denote the germ at a (with respect to the Zariski
topology) of SinvX (a) (so thatinvX (·) = invX (a) on SX (a)). Then SX (a) and E(a)
simultaneously have only normal crossings (i.e., there are local coordinates in
which each is a union of coordinate subspaces). IfinvX (a) = (. . . ;∞), then SX (a)
is smooth. IfinvX (a) = (. . . ; 0) and Z denotes an irreducible component of SX (a),
then

Z = SX (a) ∩ ⋂{H ∈ E(a) : Z ⊂ H } .
(4) Let a ∈ Mj . If invX (a) = (. . . ;∞) and σ is the local blowing-up of Mj

with centre SX (a), theninvX (a′) < invX (a) for all a ′ ∈ σ−1(a). Otherwise, there
is an additional invariantµX (a) ≥ 1 such that, if Z is an irreducible component
of SX (a) andσ is the local blowing-up with centre Z , then

(
invX (a′), µX (a′)

)
<(

invX (a), µX (a)
)

for all a ′ ∈ σ−1(a). (et !µX (a) ∈ N, with et as defined following
1.3.)

Theorem 1.14 will be proved in Chapter II in the case thatX is a hypersurface,
and completed in Chapter III in the general case. Condition (1) (i) implies invX is
Zariski-semicontinuous if|X| is quasi-compact or ifX is an analytic space over
a locally compact fieldk (Remark 6.14). Note that, because of the bounds on
the denominators of the termsνr (a) in invX (a), the stabilization property (2) of
Theorem 1.14 is an immediate consequence of the corresponding property of the
Hilbert-Samuel function. An elementary proof of stability of the Hilbert-Samuel
function can be found in [BM4, Theorem 5.2.1]. The present article is self-
contained except for this result and some elementary properties of the diagram
of initial exponents, for which we give references in Sect. 3.

Remark 1.15.Let a ∈ Mj andU = {x ∈ |Mj | : invX (x) ≤ invX (a)}. Then each
irreducible component ofSX (a) extends to a smooth (Zariski-) closed subset of
U . This is a consequence of 1.14 (3): Ifa ∈ Mj , we label every componentZ
of SX (a) as ZI , whereI = {H ∈ E(a) : Z ⊂ H }. Consider any total ordering
on the collection of all subsetsI of Ej . For eacha ∈ Mj , put J (a) = max{I :
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ZI is a component ofSX (a)}; set inveX (a) =
(
invX (a); J (a)

)
. Clearly, inve

X (·)
satisfies 1.14 (1)(i) and its maximum locus inU is smooth.

Of course, givena ∈ Mj and any componentZI of SX (a), we can choose the
ordering above so thatI = J (a) = max{J : J ⊂ Ej }; therefore,ZI extends to a
smooth Zariski-closed subset ofU .

Remark 1.16. The preceding construction shows that invX (a) can be extended
to an invariant inveX (a) =

(
invX (a); J (a)

)
which has the property that, for alla,

Se
X (a) is smooth (whereSe

X (a) is the germ ofSinve
X (a) at a): It suffices to order the

subsets of eachEj as follows: WriteEj = {H j
1 , . . . ,H

j
j }, whereH j

i is the strict

transform ofH j−1
i by σj , i = 1, . . . , j − 1, andH j

j = σ−1
j (Cj−1) (i.e., eachH j

i is

the strict transform ofσ−1
i (Ci−1) by the sequence of blowings-upσi +1, . . . , σj ).

Associate to eachI ⊂ Ej the sequence (δ1, . . . , δj ), whereδi = 0 if H j
i 6∈ I and

δi = 1 if H j
i ∈ I , and use the lexicographic ordering of such sequences, for allj

and I ⊂ Ej . (See Remark 6.17.)

Universal and canonical desingularization.The extended invariant inve
X and

Theorem 1.14 give a desingularization algorithm with uniquely determined cen-
tres of blowing up: When our spaces are quasi-compact (e.g., schemes or compact
analytic spaces) we get a tower of invX -admissible blowings-up (1.1) by succes-
sively choosing as each smooth closed centreCj , the locus of (the finitely many)
maximal values of inveX on SingXj . (If a ∈ SingXj , then SX (a) ⊂ SingXj be-
cause the Hilbert-Samuel function distinguishes between smooth and singular
points.) By property 1.14 (4),

(
invX (a′), µX (a′)

)
<
(
invX (a), µX (a)

)
for all

a ∈ Cj and a′ ∈ σ−1
j +1(a). Theorem 1.6 follows. (See Sect. 10.) A theorem for

analytic spacesX which are not necessarily compact follows from the algorithm
applied to relatively compact open subsets ofX (Sect. 13).

Our desingularization algorithm isuniversalfor Noetherian spaces: To every
X, we associate a morphism of resolution of singularitiesσX : X ′ → X such that
any local isomorphismX |U → Y |V lifts to an isomorphismX ′ | σ−1

X (U ) →
Y ′ | σ−1

Y (V ) (in fact, lifts to isomorphisms throughout the entire towers of
blowings-up). (U ,V denote Zariski-open subsets of|X|, |Y |, respectively.) See
Sect. 13.

For analytic spaces which are not necessarily compact, the resulting procedure
is canonical: GivenX, there is a morphism of desingularizationσX : X ′ → X such
that any isomorphismX|U → X|V (over subsetsU , V of |X| which are open
in the Hausdorff topology) lifts to an isomorphismX ′ | σ−1

X (U ) → X ′ | σ−1
X (V ).

(See Sect. 13.)

Presentation of the invariant. We outline here the construction of invX that is
detailed in Chapter II. (It might help to read this subsection in parallel with the ex-
amples of Sect. 2.) The entriess1(a), ν2(a), s2(a), . . . of invX (a) will themselves
be defined recursively. Let us write invr for invX truncated aftersr (with the con-
vention that invr (a) = invX (a) if r > t). We also write invr + 1

2
(a) = (invr ; νr +1),

so that inv1/2(a) meansHXj ,a. For eachr , the entriessr , νr +1 of invX can be
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defined inductively over a tower of (local) blowings-up (1.1) whose centresCi

are (r − 1
2)-admissiblein the sense that:

(1.17)(1)Ci andEi simultaneously have only normal crossings;
(2) invr− 1

2
is locally constant onCi .

Once invr + 1
2

is defined, r ≥ 0, sr +1 can be introduced immediately, in

an invariant way: Consider a tower of local blowings-up (1.1) with (r + 1
2)-

admissible centres. Writeπij = σi +1 ◦ · · · ◦ σj , i = 0, . . . , j − 1, andπjj = id .
Supposea ∈ Mj . We set ai = πij (a). First considerr = 0. Let i de-
note the smallest indexk such that inv1/2(a) = inv1/2(ak) and setE1(a) =
{H ∈ E(a) : H is the strict transform of some hypersurface inE(ai )}. We de-
fine s1(a) = #E1(a). In general, suppose thati is the smallest indexk such that
invr + 1

2
(a) = invr + 1

2
(ak). Let Er +1(a) = {H ∈ E(a)\⋃q≤r Eq(a): H is the strict

transform of some element ofE(ai )}. We definesr +1(a) = #Er +1(a).
We will introduce eachνr +1(a) by an explicit construction in local coordi-

nates. Let us consider data of the following type at a (closed) pointa ∈ M :

N = N (a): a germ ata of a regular submanifold ofM of codimensionp;
H (a) = {(h, µh)}: a finite collection of pairs (h, µh), where eachh ∈ ON ,a

and eachµh ∈ Q is an “assigned multiplicity”µh ≤ µa(h). (µa(h) is the order
of h at a);

E (a): a collection of smooth hypersurfacesH 3 a such thatN and E (a)
simultaneously have only normal crossings, andN 6⊂ H , for all H ∈ E (a).

We will call
(
N (a),H (a),E (a)

)
aninfinitesimal presentation, and we define

its equimultiple locus SH (a) as{x ∈ N : µx(h) ≥ µh, for all (h, µh) ∈ H (a)}.
SH (a) ⊂ N is well-defined as a germ ata. Given an infinitesimal presentation(
N (a),H (a), E (a)

)
, we also define a transform

(
N (a′),H (a′),E (a′)

)
by a

morphism of each of 3 types: (i)admissible blowing-up, (ii) projection from the
product with a line, (iii) exceptional blowing-up. See (4.3). For example, a local
blowing-upσ: M ′ → M with smooth centreC is admissible ifC ⊂ SH (a) and
C and E (a) simultaneously have only normal crossings. In this case, letN ′

denote the strict transform ofN by σ, and leta′ ∈ σ−1(a) such thata′ ∈ N ′ and
µa′ (h′) ≥ µh, for all (h, µh) ∈ H (a), whereh′ = y−µh

exc h ◦ σ (provided sucha′

exists). (yexc denotes a local generator of the ideal ofσ−1(C).) We setN (a′) =
germ of N ′ at a′, H (a′) = {(h′, µh)}, and E (a′) = {σ−1(C)} ∪ {H ′ : H ∈
E (a), a′ ∈ H ′} (whereH ′ = the strict transform ofH ).

Transformations of types (ii) and (iii) will be needed only to prove the invari-
ance ofνr +1(a) using certain sequences of test blowings-up. Of coursey−µh

exc h◦σ
above is defined only up to an invertible factor, but two different choices are
equivalent in the sense of the following definition: GivenE (a), we will say that
two infinitesimal presentations

(
N ,F (a),E (a)

)
and

(
P,H (a),E (a)

)
(per-

haps of different codimension) areequivalent(with respect to transformations of
types (i), (ii) and (iii)) if:

(1) SF (a) = SH (a).
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(2) If σ is a local blowing-up as in (i) anda′ ∈ σ−1(a), then a′ ∈ N ′

and µa′ (y
−µf
exc f ◦ σ) ≥ µf , for all (f , µf ) ∈ F (a), if and only if a′ ∈ P′ and

µa′ (y
−µh
exc h ◦ σ) ≥ µh, for all (h, µh) ∈ H (a).

(3) After a transformation of type (i), (ii) or (iii),
(
N ′,F (a′),E (a′)

)
is

equivalent to
(
P′,H (a′),E (a′)

)
. (This makes sense recursively.)

For example, assume that (N (a),H (a),E (a)) is an infinitesimal presen-
tation, H (a) = {(h, µh)}. Then: (1) There is an equivalent presentation with
µh ∈ N, independent ofh: simply replace each (h, µh) by (he/µh , e), for suitable
e. (2) Suppose there is (h, µh) ∈ H (a) with µa(h) = µh and h = Πhmi

i . If we
replace (h, µh) in H (a) by the collection of (hi , µhi ), eachµhi = µa(hi ), then
we obtain an equivalent presentation.

We will prove that

µH (a) := min
(h,µh)∈H (a)

µa(h)
µh

is an invariant of the equivalence class of the infinitesimal presentation
(
N (a),

H (a), E (a)
)

(in fact, with respect to transformations of types (i), (ii) alone).
Our construction starts with a local invariant that admits a presentation; we

consider here the Hilbert-Samuel functionHX,· of our spaceX ⊂ M (but see
also 1.8, 1.18): We first introduce the transformX ′ of X by a morphismσ of
type (i), (ii), (iii): X ′ is the strict transform ofX in the case of (i), and the
total transformσ−1(X) in the case of (ii) or (iii). An infinitesimal presentation
N =

(
N (a), H (a), E (a)

)
with codimN = p will be called a (codimension p)

presentation of HX,· at a (with respect toE (a)) if:
(1) SH (a) = SH (a), whereSH (a) denotes the germ ata of {x : HX,x = HX,a}.
(2) After an admissible local blowing-upσ ((i) above),HX′,a′ = HX,a if and

only if a′ ∈ N ′ andµa′ (h′) ≥ µh for all (h, µh) ∈ H (a)).
(3) Conditions (1) and (2) continue to hold after any sequence of transfor-

mations of types (i), (ii) and (iii).
In particular, after any sequence of transformations (i), (ii), (iii), the transform

(N (a′), H (a′), E (a′)) is a (codimensionp) presentation ofHX′,· at a′, with
respect toE (a′). Of course, any two presentations ofHX,· at a with respect to
E (a) are equivalent. It is clear that the equivalence class of a presentation of
HX,· at a with respect toE (a) depends only on the local isomorphism class of
M , X, E (a).

Consider, for example, a hypersurfaceX ⊂ M . Let inv1/2(a) = ν1(a) be the
orderνX,a of X at a pointa. Suppose thatg(x) = 0 is a local equation ofX at
a (i.e., g generatesIX,a). Let N (a) = germ ofM at a, G (a) = {(g, d)}, where
d = ν1(a), andE (a) = ∅. Then

(
N (a),G (a) = G1(a),E (a)

)
is a codimension

zero presentation ofν1 at a. We defineν2 (and the successiveνr +1) by induction
on codimension; the key point is that we can choosez ∈ OM ,a such thatµa(z) = 1
and (N (a),G (a),E (a)) is equivalent to (N (a),G (a)∪{(z, 1)},E (a)). It follows
that, after any sequence of transformations of types (i), (ii) and (iii),µa′ (z′) = 1,
SG (a′) ⊂ {z′ = 0} and (N (a′),G (a′),E (a′)) is equivalent to (N (a′),G (a′) ∪
{(z′, 1)},E (a′)) (Proposition 4.12).
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To construct the elementz above: Let (x1, . . . , xn) be a local coordinate
system forM at a (cf. Sect. 3). (By a linear coordinate change) we can assume
(∂dg/∂xd

n )(a) /= 0. Takez = ∂d−1g/∂xd−1
n ; z = 0 defines a (germ of) a regular

submanifoldN1 = N1(a) of M of codimension 1. IfC1(a) denotes the collection

of pairs (h, µh) =
(∂qg

∂xq
n

∣∣∣N1, d−q
)

, q = 0, . . . , d−2 (eachh makes sense as an

element ofON1,a), then
(
N1(a),C1(a),E (a) = ∅) is a codimension 1 presentation

of ν1 at a (cf. 4.18).
Now consider a sequence (1.1) with1

2-admissible centresCj . Let a ∈ Mj .
Let i be the smallestk such thatν1(a) = ν1(ak); in particular,E(ai ) = E1(ai ). Let
(N (ai ),G1(ai ),E (ai ) = ∅) be a codimension zero presentation ofν1 at ai , and
let (N (a),G1(a),E (a)) be its transform ata (by the sequence of blowings-up
σi +1, . . . , σj ). ThenE (a) = E(a)\E1(a) (= E1(a), say), and (N (a),G1(a),E1(a))
is a codimension zero presentation ofν1 at a with respect toE1(a). For each
H ∈ E1(a), let `H ∈ OMj ,a generateIH ,a, and letF1(a) denoteG1(a) together
with all pairs (f , µf ) = (`H , 1), H ∈ E1(a). Then (N (a),F1(a),E1(a)) is a
codimension zero presentation of inv1 = (ν1, s1) at a.

As above, choosez ∈ OMi ,ai such thatµai (z) = 1 and (N (ai ),G1(ai ),E1(ai ))
is equivalent to (N (ai ),G1(ai )∪{(z, 1)},E1(ai )). If z′ is the transform ofz at a,
then (N (a),G1(a),E1(a)) is equivalent to (N (a),G1(a) ∪ {(z′, 1)},E1(a)), and
therefore (N (a), F1(a),E1(a)) is equivalent to (N (a),F1(a) ∪ {(z′, 1)},E1(a)).
Suppose that (x1, . . . , xn) is a local coordinate system forMj at a such that
(∂z′/∂xn)(a) /= 0. Let N1 = N1(a) denote the (germ ata of a) regular subman-

ifold {z′ = 0}, andH1(a) the collection of pairs (h, µh) =
(∂qf
∂xq

n
|N1, µf − q

)
,

0 ≤ q < µf , for all (f , µf ) ∈ F1(a). Then (N1(a),H1(a),E1(a)) is a codi-
mension 1 presentation of inv1 at a. (Likewise, if C1(a) denotes the collec-

tion of pairs
(∂qg

∂xq
n
|N1, µg − q

)
, 0 ≤ q < µg, for all (g, µg) ∈ G1(a), then

(N1(a),C1(a),E1(a)) is a codimension 1 presentation ofν1 at a.)
Suppose that

(
N1(a),H1(a),E1(a)

)
is any codimension 1 presentation of

inv1 at a, with respect toE1(a) = E(a)\E1(a). Letµ2(a) = µH1(a). If µ2(a) = ∞,
we set invX (a) =

(
inv1(a);∞). Otherwise, for allH ∈ E1(a), we write

µ2H (a) := min

{
µH ,a(h)
µh

: (h, µh) ∈ H1(a)

}
,

whereµH ,a(h) denotes theorder of h along H∩N1 at a (i.e., the order to which
a generatorxH of the local ideal ofH ∩ N1 factors fromh); we defineν2(a) as

ν2(a) := µ2(a)−
∑

H

µ2H (a) .

Thenν2(a) ≥ 0. We will prove that eachµ2H (a) and thusν2(a) is an invariant of
the equivalence class of

(
N1(a),H1(a),E1(a)

)
(with respect to transformations

(i), (ii) and (iii), but with a certain restriction on the sequence allowed; see 4.10);
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hence eachµ2H (a) and ν2(a) are invariants of the local isomorphism class of
Mj , Xj , E(aj ), E1(aj ).

Let D(a) =
∏

H∈E1(a)
xµ2H (a)

H , D(a) = D2(a); eachh ∈ H1(a) can be factored

ash = Dµh · g, andµa(g) ≥ µg, whereµg = µh · ν2(a). (Rational exponents and
orders can be avoided by raising to suitable powers.) LetG2(a) be the collection
of pairs{(g, µg)} together with

(
D , 1− ν2(a)

)
if ν2(a) < 1. (G2(a) := {(D , 1)}

in the case thatν2(a) = 0.) Then
(
N1(a),G2(a),E1(a)

)
is a codimension 1

presentation of inv11
2

at a with respect toE1(a) = E(a)\E1(a). If ν2(a) = 0, set

invX (a) = inv11
2
(a).

Suppose that 0< ν2(a) <∞. Clearly,µG2(a) = 1. Now assume that theσj +1

in (1.1) are 112-admissible. SetE2(a) = E1(a)\E2(a). Then
(
N1(a),G2(a),E2(a)

)
is a codimension 1 presentation of inv11

2
at a with respect toE2(a) and, as above,

there is an equivalent codimension 2 presentation
(
N2(a),C2(a),E2(a)

)
, . . . . The

construction can be repeated in increasing codimension. Eventually we reach
t ≤ n = dimaMj such that 0< νr (a) < ∞ if r ≤ t , and νt+1(a) = 0 or ∞.
Then we define invX (a) = (invt (a); νt+1(a)) and µX (a) = µt+1(a). See Chapter
II. Our presentations satisfy a natural property of “semicoherence” (6.4) which
allows us to prove that invX is Zariski-semicontinuous using the (elementary)
Zariski-semicontinuity of order of a regular function. In Chapter II, we thus
prove Theorem 1.14 in the case of a hypersurface.

Remark 1.18.In the context of Remark 1.8, we can obtain a codimension zero
presentation (N (a),G (a),E (a) = ∅) of ν1 = νI at a (with respect to the notion
of weak transform) simply by takingN (a) = the germ ofM at a, andG (a) =
{(g, ν1(a))}, where{g} is any finite set of generators ofIa. The construction
above allows us to define invI (·) and thus to prove the analogue of Theorem
1.14, and Theorem 1.10.

Presentation of the Hilbert-Samuel function. In higher codimension, we can
define invX exactly as in the case of a hypersurface, provided we find a (semi-
coherent) presentation of the Hilbert-Samuel function. This is the subject of
Chapter III. The standard basis of̂IX,a ⊂ ÔM ,a (with respect to any identifica-

tion ÔM ,a
∼= k[[X1, . . . ,Xn]]) provides aformal presentation ofHX,· at a. The

Henselian division theorem of Hironaka [H3] gives a presentation (at least with
respect to admissible blowings-up (i); cf. [H3, Sect. 7, Theorem 1], [BM4, The-
orem 7.3]) that is algebraic in the sense of Artin, and hence involves passing to
an étale covering ofX. We use an elementary division algorithm to get a pre-
sentation by regular functions. We also giveSHX,a = {x ∈ |X| : HX,x ≥ HX,a} a
natural structure of a closedsubspaceof X (cf. [Gi]), and prove equality of the
ideals definingSHX,a and the equimultiple locus of a regular presentation.

Remark 1.19.The standard basis of̂IX,a itself extends to a presentation of the
Hilbert-Samuel function which is regular in a weaker sense that nevertheless
suffices to prove desingularization using Chapter II: Let{F} ⊂ ÎX,a denote the
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standard basis (with respect to a generic coordinate system). Then all formal
derivatives∂|α|F/∂Xα, α ∈ Nn, when restricted toSHX,a , are (induced by)
regular functions defined in a common neighbourhoodU of a. Moreover, the
induced formal expansions at eachb ∈ SHX,a ∩U provide a formal presentation
at b. (This was our original approach and seems of independent interest; we plan
to publish details elsewhere.)

2. Examples and an application

In the examples below, we will follow the desingularization algorithm (over a
sequence of local blowings-up of a hypersurface) as sketched in “Presentation
of the invariant” in Sect. 1 and detailed in Chapter II. We will use the notation
from Sect. 1.

Example 2.1. Consider the hypersurfaceX = V (g) ⊂ k3 defined byg(x) =
x2

3 − x2
1 x3

2 .
Year zero.Let a = 0. Thenν1(a) = µa(g) = 2 andE(a) = ∅, so s1(a) = 0. A

codimension zero presentation of inv1/2 = ν1 at a (with respect toE1(a) = ∅) is
given by (N (a),G1(a),E1(a) = ∅), whereN (a) = k3 and G1(a) = {(g, 2)} =
F1(a). We can takeN1(a) = {x3 = 0} and H1(a) = {(x2

1 x3
2 , 2)} to get a

codimension 1 presentation (N1(a),H1(a),E1(a)) of inv1 = (ν1, s1) at a. Thus,
ν2(a) = µ2(a) = 5/2 and inv11

2
(a) = (2, 0; 5/2). Let G2(a) = {(x2

1 x3
2 , 5)}; then

(N1(a),G2(a),E1(a)) is a codimension 1 presentation of inv11
2

at a. The latter is

equivalent to (N1(a), {(x1, 1), (x2, 1)}, E1(a) = ∅), so repeating the construction,
we find invX (a) = (2, 0; 5/2, 0; 1, 0;∞) andSinvX (a) = Sinv

1 1
2

(a) = {a}. (SinvX (a)

is the germ ofSinvX (a) at a, etc.) We thus letσ1 : M1 → M0 = k3 be the blowing-
up with centreC0 = {a}. M1 is covered by coordinate chartsUi = M1\{xi = 0}′,
where{xi = 0}′ is the strict transform of{xi = 0}, i = 1, 2, 3; σ1|U1 can be
written x1 = y1, x2 = y1y2, x3 = y1y3 (cf. “Blowing up” in Sect. 3).

Year one.Let X1 denote the strict transform ofX by σ1; thenX1∩U1 = V (g1),
whereg1 = y−2

1 g◦σ1 = y2
3 − y3

1y3
2. Let b = 0 in U1. Then ν1(b) = 2 = ν1(a);

therefore,E1(b) = ∅, s1(b) = 0, and E1(b) := E(b)\E1(b) = E(b) = {H1},
where H1 = σ−1

1 (a) = {y1 = 0}. We can takeF1(b) = G1(b) = {(g1, 2)},
N1(b) = {y3 = 0} = N1(a)′, and H1(b) = {(y3

1y3
2 , 2)}. (Of coursey3

1y3
2 =

y−2
1 ((x2

1 x3
3 )◦σ1).) Thenµ2(b) = 3 andµ2H1(b) = 3/2, so thatν2(b) = 3−3/2 = 3/2

and inv11
2
(b) = (2, 0; 3/2). D2(b) = y3/2

1 , so thatG2(b) = {(y3
2 , 3)}, which is

equivalent to{(y2, 1)}. (N1(b),G2(b),E1(b)) is a presentation of inv11
2

at b;

therefore,Sinv
1 1

2

(b) = {y2 = y3 = 0}. Repeating the procedure:E2(b) = {H1},

inv2(b) = (2, 0; 3/2, 1) and inv2 is presented atb by (N1(b),F2(b),E2(b) = ∅),
where F2(b) = {(y1, 1), (y2, 1)}. Finally, invX (b) = (2, 0; 3/2, 1; 1, 0;∞) and
SinvX (b) = Sinv2(b) = {y1 = y2 = y3 = 0} = {b}. We let σ2 be the
blowing-up with centreC1 = {b}. σ−1

2 (U1) is covered by 3 coordinate charts
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U1i = σ−1
2 (U1)\{yi = 0}′, i = 1, 2, 3; σ2|U12 can be writteny1 = z1z2, y2 = z2,

y3 = z2z3.

Year two.Let X2 denote the strict transform ofX1; in particular,X2 ∩ U12 =
V (g2), where g2 = z−2

2 g1◦σ2 = z2
3 − z3

1 z4
2 . Let c = 0 in U12. Now, E(c) =

{H1,H2}, whereH1 = {y1 = 0}′ = {z1 = 0} and H2 = σ−1
2 (b) = {z2 = 0}. Then

ν1(c) = 2 = ν1(a), so thatE1(c) = ∅, s1(c) = 0, andE1(c) = E(c). We take
F1(c) = G1(c) = {(g2, 2)}, N1(c) = {z3 = 0}, and H1(c) = {(z3

1 z4
2 , 2)}. Then

µ2(c) = 7/2 and D2(c) = z3/2
1 z2

2 , so thatν2(c) = 0 and invX (c) = inv11
2
(c) =

(2, 0; 0). (N1(c),H1(c),E1(c)) is a presentation of inv1 (or of inv1/2) at c, and(
N1(c),G2(c),E1(c)

)
, whereG2(c) = {(D2(c), 1

)}, is a presentation of invX =
inv11

2
at c. SinvX (c) = Sinv

1 1
2

(c) is the union of thez2- andz1-axes;SinvX (c)∩H1 =

z2-axis andSinvX (c) ∩ H2 = z1-axis. In the lexicographic ordering of the set of
subsets ofE(c) (given by 1.16),{H1} = (1, 0) > (0, 1) = {H2}, so thatJ (c)
= {H1} and inveX (c) = (invX (c); {H1}). In other words, although (for property
1.14(4)) we could choose either component ofSinvX (c) as centre of blowing-up,
for the purpose of canonical desingularization we chooseC2 = z2-axis. Letσ3

be the blowing-up with centreC2. σ−1
3 (U12) is covered by 2 coordinate charts

U12i , whereU12i = σ−1
3 (U12)\{zi = 0}′, i = 1, 3; σ3|U121 can be writtenz1 = w1,

z2 = w2, z3 = w1w3.

Year three.Let X3 be the strict transform ofX2; in particular,X3 ∩ U121 =
V (g3), whereg3 = w2

3−w1w
4
2. Let d = 0 in U121, so thatE(d) = {H2,H3}, where

H2 = {z2 = 0}′ = {w2 = 0} and H3 = σ−1
3 (C2) = {w1 = 0}. Then ν1(d) = 2,

so thatE1(d) = ∅, s1(d) = 0, andE1(d) = E(d). We takeN1(d) = {w3 = 0}
(still the strict transform ofN1(a) = {x3 = 0}) andH1(d) = {(w1w

4
2, 2)}. Then

µ2(d) = 5/2 andD2(d) = w
1/2
1 w2

2, so thatν2(d) = 0 and invX (d) = inv11
2
(d) =

(2, 0; 0). Again,
(
N1(d),H1(d),E1(d)

)
is a presentation of inv1 (or of inv1/2)

at d, and
(
N1(d),G2(d),E1(d)

)
, whereG2(d) = {(D2(d), 1)} is a presentation

of invX = inv11
2

at d. Therefore,SinvX (d) = Sinv
1 1

2

(d) = {w2 = w3 = 0}. We let

σ4 be the blowing-up with centreC3 = w1-axis. Note that invX (d) = invX (c),
but µX (d) = µ2(d) = 5/2 < 7/2 = µ2(c) = µX (c) (as predicted by Theorem
1.14 (4)). σ−1

4 (U121) is covered by 2 coordinate chartsU121i , where U121i =
σ−1

4 (U121)\{wi = 0}′, i = 2, 3; σ4|U1212 can be writtenw1 = v1, w2 = v2,
w3 = v2v3.

Year four.Let X4 be the strict transform ofX3; thusX4∩U1212 = V (g4), where
g4 = v2

3 − v1v
2
2. Let e = 0 in U1212, so thatE(e) = {H3,H4}, whereH3 = {w1 =

0}′ = {v1 = 0} andH4 = σ−1
4 (C3) = {v2 = 0}. Thenν1(e) = 2, so thatE1(e) = ∅,

s1(e) = 0, E1(e) = E(e). As above, we getµ2(e) = 3/2 andD2(e) = v
1/2
1 v2, so

that invX (e) = (2, 0; 0). invX is presented ate by
(
N1(e),G2(e),E1(e)

)
, where

N1(e) = {v3 = 0} andG2(e) = {(D2(e), 1
)}. Therefore,SinvX (e) = {v2 = v3 = 0}.

It is easy to see that, if we blow up with centreC4 = SinvX (e), then the multiplicity
of the strict transform decreases; in fact, the strict transformX5 is non-singular.
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Example 2.2.ConsiderX = {x2
3−x1x2

2 = 0} – the hypersurface in year four above
– but without a history of blowings-up; i.e.,E(·) = ∅. Let a = 0. In this case,
inv11

2
(a) = (2, 0; 3/2) (cf. year zero above), and we can takeN1(a) = {x3 = 0},

H1(a) = {(x1x2
2 , 2)} and G2(a) = {(x1x2

2 , 3)};
(
N1(a),G2(a),E1(a) = ∅)

is a codimension 1 presentation of inv11
2

at a, and we get an equivalent

presentation by replacingG2(a) with {(x1, 1), (x2, 1)}. Therefore, invX (a) =
(2, 0; 3/2, 0; 1, 0;∞) (as in year zero above) As centre of blowing up we would
chooseC = SinvX (a) = {a} – not thex1-axis as in year four of 2.1, although the
singularity is the same!

Example 2.3.Consider the hypersurfaceX = V (g) ⊂ k3, whereg(x) = x3
3 −x1x2.

Year zero.Let a = 0. Thenν1(a) = µa(g) = 2 and SingX = {a}, so that
SinvX (a) = {a}. We therefore letσ1 : M1 → M0 = k3 be the blowing-up with
centreC0 = {a}. M1 is covered by 3 coordinate chartsUi = M1\{xi = 0}′, where
{xi = 0}′ is the strict transform of{xi = 0}, i = 1, 2, 3; σ1|U3 can be written
x1 = y1y3, x2 = y2y3, x3 = y3.

Year one.Let X1 denote the strict transform ofX by σ1; thenX1∩U3 = V (g1),
whereg1 = y−2

3 g◦σ1 = y3 − y1y2. Let b = 0 in U3. Thenν1(b) = 1 < 2 = ν1(a);
thereforeE1(b) = E(b) = {H1}, whereH1 = σ−1

1 (a) = {y3 = 0}, so thats1(b) =
1 and E1(b) = ∅. We can takeF1(b) = {(g1, 1), (y3, 1)}, N1(b) = {y3 = 0}
and H1(b) = {(y1y2, 1)}. Then µ2(b) = 2 = ν2(b), inv11

2
(b) = (1, 1; 2) and

F2(b) = G2(b) = {y1y2, 2)}, which is equivalent to{(y1, 1), (y2, 1)}. It follows
that invX (b) = (1, 1; 2, 0; 1, 0;∞) and SinvX (b) = Sinv

1 1
2

(b) = {b}. Let σ2 be the

blowing-up with centreC1 = {b}. σ−1
2 (U3) is covered by 3 coordinate charts

U3i = σ−1
2 (U3)\{yi = 0}′, i = 1, 2, 3; σ2|U31 can be writteny1 = z1, y2 = z1z2,

y3 = z1z3.
Year two.Let X2 be the strict transform ofX1; in particular,X2∩U31 = V (g2),

whereg2 = z−1
1 g1◦σ2 = z3 − z1z2. Let c = 0 in U31. Then ν1(c) = 1 = ν1(b),

and E(c) = {H1,H2}, whereH1 = {y3 = 0}′ = {z3 = 0} and H2 = σ−1
2 (b) =

{z1 = 0}, so thatE1(c) = {H1}, s1(c) = 1 andE1(c) = {H2}. We takeF1(c) =
{(g2, 1), (z3, 1)}, N1(c) = {z3 = 0} and H1(c) = {(z1z2, 1)}. Then µ2(c) = 2
and D2(c) = z1, so ν2(c) = 1 and inv11

2
(c) = (1, 1; 1). HenceE2(c) = {H2} and(

N1(c),G2(c),E2(c)
)
, whereG2(c) = {(z2, 1)} and E2(c) = ∅, is a presentation

of inv11
2

at c. It follows that invX (c) = (1, 1; 1, 1; 1, 0;∞) andSinvX (c) = {c}. Let

σ3 be the blowing-up with centreC2 = {c}. σ−1
3 (U31) is covered by 3 coordinate

chartsU31i = σ−1
3 (U31)\{zi = 0}′, i = 1, 2, 3; σ3|U311 can be writtenz1 = w1,

z2 = w1w2, z3 = w1w3.
Year three.Let X3 be the strict transform ofX2; in particular,X3 ∩ U311 =

V (g3), whereg3 = w3 − w1w2. Let d = 0 in U311, so thatE(d) = {H1,H3},
whereH1 = {w3 = 0} and H3 = σ−1

3 (c) = {w1 = 0}. Thenν1(d) = 1, E1(d) =
{H1}, s1(d) = 1 andE1(d) = {H3}. We takeF1(d) = {(g3, 1), (w3, 1)}, N1(d) =
{w3 = 0} and H1(d) = {(w1w2, 1)}. Thenµ2(d) = 2 andD2(d) = w1, so that
ν2(d) = 1 and inv11

2
(d) = (1, 1; 1). HenceE2(d) = ∅, inv2(d) = (1, 1; 1, 0) and
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N1(d),F2(d),E2(d)

)
, whereF2(d) = G2(d) = {(w2, 1)} andE2(d) = {H3}, is a

presentation of inv2 at d. It follows that invX (d) = (1, 1; 1, 0;∞) andSinvX (d) =
{w3 = 0, w2 = 0}. In this chartU311, X3 is smooth and has only normal crossings
with respect to the collectionE3 of all exceptional divisors at every point of
{w3 = w2 = 0} exceptd = 0 (cf. 1.7(3)).

An application: Ĺ ojasiewicz’s inequalities.The fundamental inequalities of
Ĺ ojasiewicz are immediate consequences of desingularization in the form of
Theorem 1.10 (or 1.6 in the hypersurface case); in fact, we need only the fol-
lowing:

Theorem 2.4. Let M be a manifold, and letI ⊂ OM denote a sheaf of (principal)
ideals of finite type. Then there is a manifold M′ and a proper surjective morphism
ϕ : M ′ → M such thatϕ−1(I ) is a normal-crossings divisor.

Theorem 2.5. Inequality I. Assume k= R or C. Let f andg be regular functions
on a manifold M . (Recall that “regular” means “analytic” in the category of
analytic spaces.) Suppose that K is a compact subset of M and that{x : g(x) =
0} ⊂ {x : f (x) = 0} in a neighbourhood of K . Then there exist c,λ > 0 such that
|g(x)| ≥ c|f (x)|λ in a neighbourhood of K . The infimum of suchλ is a positive
rational.

Proof. This is obvious iff (x)·g(x) has only normal crossings in a neighbourhood
of K ; in general, therefore, it follows from Theorem 2.4. �

Remark 2.6.We are assuming here that the category of spaces is from (0.2) (2)
or (3). (If M has a quasi-compact underlying algebraic structure with respect to
which f andg are regular, thenλ can be chosen independent ofK ; there is an
analogous remark concerning Inequalities II and III following.) The argument
above allows us to conclude that, in any of the categories of (0.2), locally some
power of f ◦ϕ belongs to the ideal generated byg◦ϕ; it follows that locally f
belongs to the integral closure of the ideal generated byg, and the equation of
integral dependence has degree bounded onK (cf. [LT]).

Theorem 2.7. Inequality II. Let f be a regular function on an open subspace
M of Rn. Suppose that K is a compact subset of M , on whichgradf (x) = 0 only
if f (x) = 0. Then there exist c> 0 and µ, 0 < µ ≤ 1, such that|gradf (x)| ≥
c|f (x)|1−µ in a neighbourhood of K . (Supµ is rational.)

Proof . If f (a) = 0, then there is a neighbourhood ofa in which gradf (x) = 0
only if f (x) = 0. Let g(x) = |gradf (x)|2 =

∑n
i =1(∂f /∂xi )2. (As for Inequality

I) let ϕ : M ′ → M be a morphism given by 2.4 for the ideal generated by
f · g. We claim there is a neighbourhood ofϕ−1(K ) in which ϕ∗(f 2/g) is a
regular function vanishing on{x : (f ◦ϕ)(x) = 0}: Consider a curveγ : x = x(t)
in M such thatγ ∩ {x : f (x) = 0} = {x(0)} and γ is the image of a smooth
curve inM ′ transverse toϕ−1

({x : g(x) = 0}) at a smooth point of the latter. Let
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Q(t) = f
(
x(t)

)
. ThenQ(t) /= 0 for t /= 0, soQ(t) has nonzero Taylor expansion at

t = 0. Therefore,Q(t) is divisible byQ′(t) = df (dx/dt) andQ(t)/Q′(t) vanishes
at t = 0. Since|Q′(t)|2 ≤ g

(
x(t)

)|dx/dt|2, it follows that Q(t)2 is divisible by

g
(
x(t)

)
and f

(
x(t)

)2
/g
(
x(t)

)
vanishes att = 0. The claim follows.

From the claim, we conclude (as in 2.5) that there arec, µ > 0 (where
supµ is rational) such that|f (x)|2µ ≥ c2f (x)2/g(x) in a neighbourhood ofK .
Clearly, 0< µ ≤ 1 (µ = 1 if and only if g(x) vanishes nowhere onK .) Thus,
|gradf (x)| ≥ c|f (x)|1−µ. �

Theorem 2.8. Inequality III. Let f be a regular function on an open subspace
M of Rn, and set Z= {x ∈ M : f (x) = 0}. Suppose K is a compact subset of M .
Then there are c> 0 andν ≥ 1 such that|f (x)| ≥ cd(x,Z)ν in a neighbourhood
of K . (d(·,Z) is the distance to Z .) The infimum of suchν is rational.

Proof. This follows from Inequality II: We can assume that gradf (x) = 0 only if
f (x) = 0, onK . We then claim that (even iff is merelyC 1 and) if |gradf (x)| ≥
c|f (x)|1−µ in a neighbourhoodU of K , where 0< µ ≤ 1, then |f (x)|µ ≥
µcd(x,Z) in some neighbourhood ofK (cf. Ĺ ojasiewicz [L´ ]): Consider a point
a ∈ U such thatf (a) /= 0. We can assume thatf (a) > 0. (Otherwise, use−f .)
Suppose thatx(t) is a solution of the equationdx/dt = −gradf (x)/|gradf (x)| with
x(0) = a. Write Q(t) = f

(
x(t)

)
. ThenQ′(t) = df (dx/dt) = −|gradf

(
x(t)

)| < 0.
Hence

f (a)µ

µ
≥ Q(0)µ −Q(t)µ

µ
= − 1

µ

∫ t

0

d
dt

Q(t)µdt

= −
∫ t

0
Q(t)µ−1Q′(t)dt ≥ c

∫ t

0
dt = ct .

It follows that the solution curvex = x(t) tends toZ in a finite time t0. Since
|dx/dt| = 1, t0 ≥ d(a,Z) and f (a)µ ≥ µcd(a,Z), as required. �

3. Basic notions

Definitions and notation. Let X = (|X|,OX ) denote a local-ringed space overk.
We call |X| the supportor underlying topological spaceof X. X is smoothif,
for all x ∈ |X|, OX,x is a regular local ring. A local-ringed spaceY = (|Y |,OY )
is a closed subspaceof X if there is a sheaf of idealsIY of finite type in OX

such that|Y | = suppOX/IY andOY is the restriction to|Y | of OX/IY . Y is an
open subspaceof X if |Y | is an open subset of|X| andOY = OX

∣∣|Y |.
Let X = (|X|,OX ) be a local-ringed space. Leta ∈ |X|. Suppose thatf ∈ OX,a

(or that f ∈ OX (U ), whereU is an open neighbourhood ofa; we usually do not
distinguish betweenf ∈ OX,a and a representative in a suitable neighbourhood
U ). We define theorder µa(f ) of f at a as the largestp ∈ N such thatf ∈ mp

X,a
(wheremX,a denotes the maximal ideal ofOX,a). (µaf ) = ∞ if f = 0 in OX,a.)
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Let C be a closed subspace ofX, so thatC is defined by a sheaf of ideals
IC ⊂ OX of finite type. We define theorder µC,a(f ) of f along C at aas the
largestp ∈ N such thatf ∈ I p

C,a.
Let ϕ: X → Y be a morphism of local-ringed spaces. Thus, ifa ∈ |X|, ϕ

induces local homomorphismsϕ∗a: OY,ϕ(a) → OX,a (and ϕ̂∗a: ÔY,ϕ(a) → ÔX,a

for the completions). Ifg ∈ OY,ϕ(a) (or g ∈ OY (V ), whereV is an open neigh-
bourhood ofϕ(a)), then we will denoteϕ∗a(g) also byg ◦ ϕa or even byg ◦ ϕ.
(Similarly for ϕ̂∗a.)

An elementf ∈ OX (U ), whereU ⊂ |X| is open, will be called aregular
function (on U). We will write Xa (respectively,fa) for the germ ata of X
(respectively, off ). If U is open in|X| andf1, . . . , f` ∈ OX (U ), thenV (f1, . . . , f`)
will denote the subspace ofX|U defined by the ideal subsheaf ofOX |U generated
by the fi .

Regular coordinate charts.If M is an analytic manifold, then a classical coor-
dinate chartU is regular in the sense of (0.2). (HereO (U ) = OM (U ) means the
ring of analytic functions onU .)

In this subsection, we show how to construct regular coordinate charts in the
algebraic context. Consider a scheme of finite type overk. Let X = (|X|,OX )
denote either the scheme itself, or the local-ringed space where|X| is the set
of k-rational points of the scheme, with the induced Zariski topology, andOX

is the restriction to|X| of the structure sheaf of the scheme. We will show
that if X = M is smooth, thenM can be covered by coordinate charts as in
(0.2). In the remainder of the article, we will adopt the convention that the
residue field isk at every point (and writekn rather thanAn) in order to use
a language common to schemes, analytic spaces, etc. But it will be clear from
the construction of coordinate charts here (more precisely, from the fact that
Taylor expansion commutes with differentiation and composition), that all of our
constructions apply to points that are not necessarilyk-rational. (See Remark
3.8.)

Let M = (|M |,OM ). Each pointa of M admits a Zariski-open neighbourhood
U in which regular functions (elements ofO (U ) = OM (U )) can be described as
follows:

(3.1) (1) U = V (p1, . . . , pN−n), where N ≥ n = dimaM and thepj ∈
k[u, v] are polynomials in (u, v) = (u1, . . . , un, v1, . . . , vN−n) such that det∂p/∂v
vanishes nowhere onU (i.e., is invertible in the local ring ofAN at every point of
U ). (∂p/∂v denotes the Jacobian matrix∂(p1, . . . , pN−n)/∂(v1, . . . , vN−n).) We
thus have a closed embeddingU ↪→ AN . (We say that the projection (u, v) 7→ u
of AN ontoAn induces an “́etale covering”U → An.)

(2) Each element ofO (U ) is the restriction toU of a rational function
f = q/r , whereq, r ∈ k[u, v] and r vanishes nowhere onU .

If M is a scheme,U = Speck[u, v]/I , where I = (p1, . . . , pN−n) is the
ideal generated by thepi , and O (U ) can be identified withk[u, v]/I (by the
Nullstellensatz).
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Definition 3.2. A (regular) coordinate system(x1, . . . , xn) on a Zariski-open
subset U of|M | means an n-tuple of elements xi ∈ O (U ) satisfying the following
condition: Let a∈ U . Let ai = xi (a) ∈ Fa, i = 1, . . . , n, whereFa denotes the
residue fieldOa/ma. (ma is the maximal ideal ofOa = OM ,a.) If Φi (z) ∈ k[z]
denotes the minimal polynomial of ai (i.e., the minimal monic relation for ai with
coefficients in k), i = 1, . . . , n, then theΦi (xi ) form a basis of ma/m2

a overFa.

In this case, dimOa = dimIFa ma/m2
a. If Fa = k (i.e., if a is ak-rational point)

thenΦi (xi ) = xi − ai . In general,Φi (xi ) ∼ xi − ai in the localizationFa[xi ](ai ).
(We use∼ to mean “= except for an invertible factor”.)

In (3.1) above, the restrictionsxi to U of the ui form a regular coordinate
system (x1, . . . , xn). (The values of the coordinates may coincide at different
points ofU .)

Lemma 3.3. Let a ∈ M and let x1, . . . , xn denote regular functions on a neigh-
bourhood of a. Then there is a Zariski-open neighbourhood U of a such that
(x1, . . . , xn) is a regular coordinate system on U if and only if there is a closed
embedding U↪→ AN for some N , as in (3.1), and the xi are the restrictions of
the ui to U .

Proof. Let U be a Zariski-open neighbourhood ofa such thatU admits a closed
embeddingU ↪→ AN satisfying (3.1), and eachxi ∈ O (U ); thus eachxi is the
restriction toU of a functionqi (u, v)/ri (u, v), whereqi , ri ∈ k[u, v] and ri (u, v)
vanishes nowhere onU . Clearly, (x1, . . . , xn) forms a regular coordinate system
on U if and only if the gradients of theqi /ri and thepj are linearly independent
at every point ofU . Consider

U ↪→ An+N (y, u, v)
↘ ↓ −↓

An y

where y = (y1, . . . , yn) and U is embedded inAn+N as U = V
(
ri (u, v)yi−

qi (u, v), pj (u, v)
)
. Since eachxi is the restriction ofyi to U , (x1, . . . , xn) are

regular coordinates if and only if det∂(ri yi − qi , pj )/∂(u, v) is a unit inO (U );
the lemma follows. �

We will call a Zariski-open subsetU of |M | which satisfies the condi-
tions of Lemma 3.3 a(regular) coordinate chartwith (regular) coordinates
x = (x1, . . . , xn).

Definition 3.4. Taylor homomorphism. Let U be a regular coordinate chart in
M , with coordinates(x1, . . . , xn). For each a∈ U , there is an injective k-algebra
homomorphism Ta: OM ,a → Fa[[X]] , X = (X1, . . . ,Xn), that can be described as
follows. Let p= (p1, . . . , pN−n) (in the notation of (3.1)). By the formal implicit
function theorem, p

(
u(a) + X, v(a) + V

)
= U (X,V )

(
V −ϕ(X)

)
, whereϕ(X) ∈

Fa[[X]] N−n, ϕ(0) = 0, and U(X,V ) is an invertible(N − n) × (N − n) matrix
with entries inFa[[X,V ]] . Let f ∈ OM ,a. Then f is induced by an element F∈
k[u, v](a), and (Taf )(X) = F

(
u(a) + X, v(a) + ϕ(X)

)
.
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TheTaylor homomorphism Ta induces an isomorphism̂OM ,a → Fa[[X]]. Let
Dα: Fa[[X]] → Fa[[X]] denote the formal derivative∂|α|/∂Xα =
∂α1+···+αn /∂Xα1

1 · · · ∂Xαn
n , α = (α1, . . . , αn) ∈ Nn.

Lemma 3.5. Let U be a regular coordinate chart in M , with coordinates x=
(x1, . . . , xn). Letα ∈ Nn. If f ∈ O (U ), then there is (a unique) fα ∈ O (U ) such
that, for all a ∈ U ,

Dα(Taf )(X) = (Tafα)(X) .

(We will write fα = ∂|α|f /∂xα.) More precisely, ifα = (j ) for some j ((j ) is the
multiindex with1 in the j ’th place and0 elsewhere; i.e., Dα = ∂/∂Xj ) and if f is
induced by F= q/r , where q(u, v), r (u, v) ∈ k[u, v] (notation of (3.1)), then f(j )

is induced by

F(j ) = det
∂(F , p1, . . . , pN−n)
∂(uj , v1, . . . , vN−n)

/
det

∂(p1, . . . , pN−n)
∂(v1, . . . , vN−n)

.

Proof. It suffices to consider the case that|α| = 1; i.e.,α = (j ), for somej . Let
a ∈ U ; say

(
u(a), v(a)

)
= (0, 0). From (Taf )(X) = F

(
X, ϕ(X)

)
(as in Definition

3.4) and fromp
(
X, ϕ(X)

)
= 0, we obtain

∂Taf
∂Xj

=
∂F
∂uj

(
X, ϕ(X)

)
+
∂F
∂v

(
X, ϕ(X)

) · ∂ϕ
∂Xj

,

0 =
∂p
∂uj

(
X, ϕ(X)

)
+
∂p
∂v

(
X, ϕ(X)

) · ∂ϕ
∂Xj

.

Thus,∂Taf /∂Xj = F(j )
(
X, ϕ(X)

)
, where

F(j ) =

(
det

∂p
∂v

) ∂F
∂uj

− ∂F
∂v

·
(∂p
∂v

)#
· ∂p
∂uj

det
(∂p
∂v

) .

(A# means the matrix such thatA · A# = detA · I .) The numerator here is the
expression required in the lemma. �

Remark 3.6.In Chapters II and III below,{x : invX (x) ≥ invX (a)} is construc-
tively defined near any pointa by combinations of derivatives of the original
equations. It follows from Lemma 3.5 that this set and therefore the centre of
our blowing-up are defined over the ground fieldk (even if a is not k-rational).

Remark 3.7. Let a ∈ U . Suppose thatxi (a) = 0, i = 1, . . . , n. (We use the
notation above.) Iff ∈ O (U ) and d ∈ N, then the Taylor expansion (Taf )(X)
with respect to the regular coordinate systemx = (x1, . . . , xn) can be written in
a unique fashion as

(Taf )(X) = c0(X̃) + c1(X̃)Xn + · · · + cd−1(X̃)Xd−1
n + cd(X)Xd

n ,
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whereX̃ = (X1, . . . ,Xn−1). Of course,̃x = (x1, . . . , xn−1) forms a regular coordi-
nate system onN = V (xn) and, for eachq = 0, . . . , d − 1, cq(X̃) is the Taylor

expansion ata of the regular function onN given by the restriction of
1
q!

∂qf
∂xq

n
.

Since the Taylor homomorphism is injective, we will write

f (x) = c0(x̃) + · · · + cd−1(x̃)xd−1
n + cd(x)xd

n

for the Taylor expansion above, and we will identify eachcq(x̃), when convenient,

with the element ofON ,a induced by
1
q!

∂qf
∂xq

n
. (In the case of analytic spaces, the

preceding expression is just the usual convergent expansion with respect toxn.)

Remark 3.8. All of the arguments in the paper involvinĝOM ,a apply as they

are written at an irrational pointa provided that in the identification “̂OM ,a
∼=

k[[X]]”, the field k is understood to be not the ground field but rather the residue
field Fa. If σ is a morphism andσ(a′) = a, thenFa ⊂ Fa′ but they need not be
equal. Nevertheless, the homomorphism of completionsσ̂∗a′ : Fa[[X]] → Fa′ [[Y ]]
induced byσ∗a′ : OM ,a → OM ′,a′ and the Taylor series homomorphisms in local
coordinates, factors as

Fa[[X]] ↪→ Fa′ [[X]]
σ̂∗

a′−→Fa′ [[Y ]] .

In this context, “k” should be understood asFa′ . (For example, in the proofs
of Theorem 7.20 and 7.21 in the case of irrational points. Also in this way, the
proof of Proposition 3.13 can be read as is in the case thatFa = Fa′ ; for the
general case, see Remark 3.23.)

Properties of the category of spaces.Let A denote any of the (algebraic or
analytic) categories of local-ringed spaces overk listed in (0.1) (1) and (2). Then
A has the following essential features:

(3.9) (1) LetX ∈ A. If Y is an open or a closed subspace ofX, thenY ∈ A.
Locally, X is a closed subspace of a manifoldM ∈ A, where:

(2) A manifold M = (|M |,OM ) is a smooth space such that|M | has a neigh-
bourhood basis given by (the supports of) regular coordinate charts as in (0.2).
(It follows that if X is a smooth subspace of a manifoldM , thenX is a manifold
and is locally a coordinate subspace of a coordinate chart forM . In particular,
every smooth spaceX is a manifold and is, therefore, locally pure-dimensional.)

(3) Let X ∈ A. Then OX is a coherent sheaf of rings andX is locally
Noetherianin the sense of the following subsection.

(4) A is closed under blowing-up. (It follows that ifM ∈ A is smooth,
then a blowing-upσ: M ′ → M with smooth centreC ⊂ M can be described
locally as a quadratic transformation in regular coordinate charts.)

We recall thatOX is a coherent sheaf of rings if and only if every ideal of
finite type inOX is coherent. “Blowing-up” in (4) can be understood in terms of
the universal mapping definition of Grothendieck (cf. [H1, Ch. 0, Sect. 2]). We
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do not need this definition (and therefore do not recall it); it follows from (3)
above that ifX is a closed subspace of a manifoldM , then a blowing-up ofX
is given by thestrict transformof X by a blowing-up ofM . (See “Blowing up”
and “The strict transform” below.)

The Zariski topology. Let A denote a category of local-ringed spaces overk
(e.g., as in (0.1)). LetX = (|X|,OX ) ∈ A. A subsetS of |X| will be called
a Zariski-closed subsetof |X| (or of X) if S is the support of a closed sub-
space ofX (in A). SupposeS and T are Zariski-closed subsets of|X|; say
S = suppOX/I and T = suppOX/J , whereI ,J ⊂ OX are ideals of finite
type that define closed subspaces inA. ThenS ∩ T = suppOX/(I + J ) and
S ∪ T = suppOX/I ·J are Zariski-closed. AZariski-open subsetof |X| (or of
X) is the complement of a Zariski-closed subset. The Zariski-open subsets of|X|
define theZariski topology. In general, the (original) topology of|X| might be
bigger than the Zariski topology (e.g., in the case of analytic spaces).

We say thatX is Noetherianif every decreasing sequence of closed subspaces
of X (in A) stabilizes. We say that|X| is Noetherianif every decreasing sequence
of Zariski-closed subsets stabilizes. IfX is Noetherian, then|X| is Noetherian. We
say thatX (respectively,|X|) is locally Noetherianif every point of|X| admits an
open neighbourhoodU (whereU is the support of an open subspace inA) such
that every decreasing sequence of closed subspaces ofX (respectively, Zariski-
closed subsets of|X|) stabilizes onU . Clearly, if X (respectively,|X|) is locally
Noetherian and|X| is quasi-compact, thenX (respectively,|X|) is Noetherian. (A
real- or complex-analytic spaceX is Noetherian if and only if|X| is compact.) If
X is locally Noetherian, then the intersection of any family of closed subspaces
of X is a subspace; hence the intersection of any family of Zariski-closed subsets
of |X| is Zariski-closed.

Lemma 3.10. Suppose|X| is Noetherian. LetΣ be a partially ordered set in
which every decreasing sequence stabilizes. Letτ : |X| → Σ. Then the following
are equivalent:
(1) τ is upper-semicontinuous in the Zariski topology; i.e., each a∈ |X| admits
a Zariski-open neighbourhood U such thatτ (x) ≤ τ (a) for all x ∈ U .
(2) τ takes only finitely many values and, for allσ ∈ Σ, Sσ := {x ∈ |X| : τ (x) ≥
σ} is Zariski-closed.

Proof . Assume (1). Letσ ∈ Σ. Set W = |X|\Sσ. If a ∈ W, then a has a
Zariski-open neighbourhoodUa in which τ (x) ≤ τ (a) (so thatτ (x) 6≥ σ); in
particular,Ua ⊂ W. Thus W =

⋃
a∈W Ua. Since |X| is Noetherian,W is the

union of finitely manyUa, so thatW is Zariski-open, as required. It follows
from the hypothesis onΣ that τ takes only finitely many values. Conversely,
assume (2). Leta ∈ |X|. Set U = {x ∈ |X| : τ (x) ≤ τ (a)}. Then U is the
complement of the finite union

⋃
σ 6≤τ (a) Sσ. �

Definition 3.11. LetΣ denote a partially-ordered set. A functionτ : |X| → Σ is
Zariski- semicontinuousif: (1) Locally, τ takes only finitely many values (locally
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with respect to open subspaces of X inA). (2) For all σ ∈ Σ, {x ∈ |X| : τ (x) ≥
σ} is Zariski-closed.

The Hilbert-Samuel functionHX,· and therefore our invariant invX take values
in partially-ordered sets satisfying the hypothesis of Lemma 3.10 (by [BM4,
Theorem 5.2.1]; cf. Theorem 1.14). Our definition of invX in Sect. 6 shows
that, when the given topology of|X| differs from the Zariski topology, invX is
semicontinuous in a sense that is (a priori) weaker than 3.11: (In the notation of
Theorem 1.14), every point of|Mj | has a coordinate neighbourhoodU such that,
for all a ∈ U , Va := {x ∈ U : invX (x) ≤ invX (a)} is Zariski-open in

∣∣Mj |U
∣∣. If

|Mj | is locally Noetherian (or ifX is a hypersurface), then, as in 3.10, there is a
covering by coordinate chartsU in which invX takes only finitely many values
and (for any valueι), {x ∈ U : invX (x) ≥ ι} is Zariski-closed in

∣∣Mj |U
∣∣.

Of course, if S ⊂ |X| and |X| is covered by open subsetsU such that
eachS ∩ U is the support of a smooth subspace ofX|U , then S is globally
the support of a smooth subspace ofX. As a consequence, the centres of the
blowings-up prescribed by our desingularization algorithm are always smooth
spaces.Moreover, in the case of analytic spaces (for example), it follows from
invariance of invX with respect to finite extension of the base fieldk that invX

is actually Zariski-semicontinuous in the stronger sense.

Blowing-up. Let A be a category of local-ringed spaces overk as in (3.9).
Let M = (|M |,OM ) be a smooth space inA, andC a smooth subspace ofM .
Then C is covered by regular coordinate chartsU of M , each of which has
coordinatesx = (w, z), w = (w1, . . . , wn−r ), z = (z1, . . . , zr ), in which C ∩ U =
V (z) = V (z1, . . . , zr ).

Let σ: M ′ = BlC M → M be the blowing-up ofM with centreC . Let U be
a regular coordinate chart as above, and letU ′ = σ−1(U ). ThenU ′ ∼= {(a, ξ) ∈
U × Pr−1 : z(a) ∈ ξ}, wherePr−1 is the (r − 1)-dimensional projective space
of lines ξ through 0 inkr (or Ar ); if we write ξ ∈ Pr−1 as ξ = [ξ1, . . . , ξr ] in
homogeneous coordinates, then

U ′ = {(a, ξ) ∈ U × Pr−1 : zi (a)ξj = zj (a)ξi , 1≤ i , j ≤ r } .

Therefore,U ′ =
r⋃

i =1
U ′i , where, for eachi , U ′i = {(a, ξ) ∈ U ′ : ξi = 1}.

It follows that, for eachi , U ′i is a regular coordinate chart with coordinates
x′ = (w′, z′), w′ = (w′1, . . . , w

′
n−r ), z′ = (z′1, . . . , z

′
r ) given byw′(a, ξ) = w(a),

z′i (a, ξ) = zi (a), and z′j (a, ξ) = zj (a)/zi (a) if j /= i . In particular, suppose that
f ∈ OM ,a, wherea ∈ U andw(a) = 0, z(a) = 0; if a′ ∈ σ−1(a) ∩ U ′i , then the
Taylor expansion off ◦σ at a′ is given by formal substitution ofw = w′, zi = z′i
andzj = z′i

(
z′j (a′) + z′j

)
, j /= i , in the Taylor expansion off at a.

Example 3.12. Let M = (|M |,OM ) be a smooth scheme of finite type overk,
and letU be a regular coordinate chart with coordinatesx = (x1, . . . , xn) as in
(3.1). As before, suppose thatx = (w, z) such thatC ∩ U = V (z). ConsiderU ′i ,
say for i = 1. (Using the notation of (3.1)) we have a commutative diagram
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U ′1 ↪→ AN+(r−1)

↘ ↓
An

whereU ′1 is embedded inAN+(r−1) asV (p1, . . . , pN−n, qj := un−r +j − un−r +1ξj ,
j = 2, . . . , r ) (in the affine coordinates (u, v, ξ2, . . . , ξr ) of AN+(r−1)) and the
projection is given by (u1, . . . , un−r , un−r +1, ξ2, . . . , ξr ). U ′1 → kn is an étale
covering since

det
∂(p, q2, . . . , qr )

∂(v, un−r +2, . . . , un)
= det

∂p
∂v

.

The strict transform. We use the notation of the preceding subsection. Letσ:
M ′ → M be a blowing-up with smooth centreC ⊂ M , and letH = σ−1(C). Let
X be a closed subspace ofM . First suppose thatX is a hypersurface; i.e., IX is
principal. Leta ∈ M and let f ∈ IX,a be a generator ofIX,a. If a′ ∈ σ−1(a),
then we defineIX′,a′ as the principal ideal inOM ′,a′ generated byf ′ = y−d

exc f ◦σ,
whereyexc denotes a generator ofIH ,a′ andd = µC,a(f ). (Thusd is the largest
power ofyexc to which f ◦σ is divisible inOM ′,a′ .) In this way we get a coherent
sheaf of principal idealsIX′ in OM ′ ; the strict transform X′ of X byσ means
the corresponding closed subspace ofM ′.

In local coordinates as above, suppose thatw(a) = 0, z(a) = 0, and let
a′ ∈ U ′1. Thenyexc = z′1 and (the Taylor expansion ata′ of) f ′ is given by

f ′(w′, z′) = (z′1)−df
(
w′, z′1, z

′
1(z̃′(a) + z̃′)

)
,

where z̃′ = (z′2, . . . , z
′
r ). We will also call f ′ the “strict transform” off by σ,

although f ′ is, of course, only defined up to multiplication by an invertible
factor.

The strict transform byσ of an arbitrary closed subspaceX of M can be
defined as the closed subspaceX ′ of M ′ such that, locally at eacha′ ∈ M ′, X ′

is the intersection of the strict transforms of all hypersurfaces containingX near
a = σ(a′); i.e., IX′,a′ ⊂ OM ′,a′ is the ideal generated by the strict transformsf ′

of all f ∈ IX,a.

Proposition 3.13 (cf. [H1]). Let a′ ∈ M ′. ThenIX′,a′ is the ideal{f ∈ OM ′,a′ :
yk

excf ∈ Iσ−1(X),a′ , for some k∈ N}. (Iσ−1(X),a′ is generated byσ∗a′ (IX,σ(a′)).)

We will give a simple proof of Proposition 3.13 below, as an application of
the diagram of initial exponents. By Proposition 3.13,IX′ =

∑
k [Iσ−1(X) : yk

exc],
so thatIX′ is an ideal of finite type (sinceX is locally Noetherian).

Remark 3.14. (In a category satisfying the conditions (3.9)), we define the
reduced space Xred corresponding toX using the coherent sheaf of ideals
IXred =

√
IX . It is easy to see that ifX ′ is the strict transform ofX by a

blowing-up, as above, then (X ′)red = (Xred)′.

Remark 3.15.Let X ′′ denote the smallest closed subspace ofσ−1(X) containing
σ−1(X)\H , whereH = σ−1(C). (X ′′ exists by local Noetherianness.) Of course,
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X ′′ ⊂ X ′. In the case of schemes or analytic spaces over an algebraically closed
field, X ′′ = X ′. (A consequence of Hilbert’s Nullstellensatz.) ButX ′′ /= X ′ in
general.

Example 3.16.Let X ⊂ M = R2 denote the real analytic subspacex4(x−1)2+y2 =
0. Letσ: M ′ → M be the blowing-up with centre{0}. Then the strict transform
X ′ ⊂ U ′, whereU ′ ⊂ M ′ is a chart in whichσ is given by x = u, y = uv.
In U ′, X ′ is defined byu2(u − 1)2 + v2 = 0, so that|X ′| = {(0, 0), (1, 0)}, but
|X ′′| = {(1, 0)}.

The diagram of initial exponents. The material in this subsection is needed
only in Chapters III and IV (but we will also use the diagram to give a simple
proof of Proposition 3.13 and to extend Remark 1.11 to the general case).

LetK be a field andK[[X]] = K[[X1, . . . ,Xn]]. If α = (α1, . . . , αn) ∈ Nn, put
|α| = α1 + · · ·+αn. The lexicographic ordering of (n + 1)-tuples (|α|, α1, . . . , αn)
induces a total ordering ofNn. Let F =

∑
α∈Nn FαXα ∈ K[[X]], where

Xα = Xα1
1 · · ·Xαn

n . Let suppF = {α : Fα /= 0}. The initial exponentexp F
is the smallest element of suppF . If α = exp F , thenFαxα is called theinitial
monomialmonF of F .

The following theorem of Hironaka [H1] (cf. [BM1, Theorem 6.2]) is a
simple generalization of Euclidean division. LetG1, . . . ,Gs ∈ K[[X]], and let
αi = exp Gi , i = 1, . . . , s. We associate toα1, . . . , αs a decomposition ofNn:

Set∆i = (αi + N) −
i−1⋃
j =1

∆j , i = 1, . . . , s, and put�0 = Nn −
s⋃

i =1
∆i . We also

define�i ⊂ Nn by ∆i = αi +�i , i = 1, . . . , s.

Theorem 3.17.For each F∈ K[[X]] , there are unique Qi ∈ K[[X]] , i = 1, . . . , s,
and R∈ K[[X]] such thatsuppQi ⊂ �i , suppR⊂ �0, and F =

∑s
i =1 Qi Gi + R.

Remark 3.18. Let m denote the maximal ideal ofK[[X]]. In Theorem 3.17, if
k ∈ N and F ∈ mk , then R ∈ mk and eachQi ∈ mk−|αi | (where m` means
K[[X]] if ` ≤ 0).

Let I be an ideal inK[[X]]. The diagram of initial exponentsN(I ) ⊂ Nn is
defined asN(I ) = {exp F : F ∈ I }. ClearlyN(I ) + Nn = N(I ). Let D (n) =
{N ⊂ Nn : N +Nn = N}. If N ∈ D (n), then there is a smallest finite subsetV

of N such thatN = V + Nn; V = {α ∈ N : N\{α} ∈ D (n)}. We callV the
verticesof N.

Corollary 3.19. Letαi , i = 1, . . . , s, denote the vertices ofN(I ). Choose Gi ∈ I
such thatαi = exp Gi , i = 1, . . . , s (we say that Gi representsαi ), and let
{∆i ,�0} denote the decomposition ofNn determined by theαi , as above. Then:

(1) N(I ) =
⋃
∆i and the Gi generate I .

(2) There is a unique set of generators Fi of I , i = 1, . . . , s, such that, for

each i ,supp(F i − xα
i
) ⊂ �0; in particular, monF i = xα

i
.
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We call F 1, . . . ,F s the standard basisof I (with respect to the given total
ordering ofNn). If N ∈ D (n), let K[[X]]N = {F ∈ K[[X]] : suppF ∩ N =
∅; i.e., suppF ⊂ �0}. Clearly,K[[X]]N is stable with respect to formal differ-
entiation.

Now let HI denote the Hilbert-Samuel function ofK[[X]]/I ; i.e., HI (k) =
dimK K[[X]]/(I + mk+1), k ∈ N. By Remark 3.18 and Corollary 3.19, we have:

Corollary 3.20. For every k∈ N, HI (k) = #{α ∈ Nn : α 6∈ N(I ) and|α| ≤ k}.
It follows that HI (k) coincides with a polynomial in k, for k large enough.

Remark 3.21.The preceding definitions make sense and the results above (except
for 3.18 and 3.20) hold, for any total ordering ofNn which is compatible with
addition in the sense that: For anyα, β, γ ∈ Nn, γ ≥ 0, andα ≤ β ⇒ α + γ ≤
β + γ.

In order to prove Proposition 3.13, we will use the total ordering ofNn given
by the lexicographic ordering of (α1, |α|, α2, . . . , αn), α ∈ Nn. We then have:

Lemma 3.22. Let I be an ideal inK[[Y ]] = K[[Y1, . . . ,Yn]] , and let J denote
the ideal J = {G(Y) ∈ K[[Y ]] : Yk

1 G(Y) ∈ I , for some k∈ N}. Suppose
that Fi (Y) ∈ I , i = 1, . . . , s, represent the vertices ofN(I ); for each i , write
Fi (Y) = Yki

1 Gi (Y), where Gi (Y) is not divisible by Y1. Then J is generated by the
Gi .

Proof . This is an immediate consequence of the following variant of Remark
3.18 which holds for the given ordering ofNn: In the formal division algorithm
3.17, if F ∈ (Y1)k , then R ∈ (Y1)k and eachQi ∈ (Y1)k−ki . ((Y1) denotes the
ideal generated byY1.) �

Proof of Proposition 3.13.We can choose coordinates ata = σ(a′) anda′ so that
ÔM ,a

∼= k[[X1, . . . ,Xn]], ÔM ′,a′ ∼= k[[Y1, . . . ,Yn]] and σ̂∗a′ : ÔM ,a → ÔM ′,a′ has
the formX` = Ỳ , ` = 1, . . . , q (whereq ≥ 1), X` = Y1(η` + Ỳ ), ` = q + 1, . . . , n.
(See Remarks 3.8, 3.23.) PutI = Îσ−1(X),a′ ⊂ k[[Y ]] and J = {G(Y) ∈ k[[Y ]] :

Yk
1 G(Y) ∈ I , for somek ∈ N}. Suppose thatHj (X), j = 1, . . . , r , generateÎX,a.

We can find polynomialsPij (Y) ∈ k[Y ], i = 1, . . . , s, j = 1, . . . , r , such that the

Fi (Y) :=
∑

j

Pij (Y)(Hj ◦ σ)(Y) ∈ I

represent the vertices ofN(I ). EachFi (Y) is the pullback byσ of∑
j

Pij

(
X1, . . . ,Xq,

Xq+1

X1
− ηq+1, . . . ,

Xn

X1
− ηn

)
Hj (X) =

1
Xqi

1

∑
j

Qij (X)Hj (X) ,

for someqi ∈ N, where theQij ∈ k[X]. Write Gi (X) =
∑

j Qij (X)Hj (X), for
eachi . Thus eachFi (Y) = (Y1)−qi (Gi ◦ σ)(Y). Write (Gi ◦ σ)(Y) = Ymi

1 G′i (Y),
whereG′i is not divisible byY1, so thatmi ≥ qi . Then Fi (Y) = Ymi−qi

1 G′i (Y),
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for eachi , where eachG′i ∈ ÎX′,a′ . But theG′i generateJ , by 3.22. (This formal
argument suffices to prove the proposition because, for any idealJ in OM ′,a′ ,

Ĵ ∩ OM ′,a′ = J .) �

Remark 3.23.The proof above in the caseFa $ Fa′ should be understood with

the following modification: We can find polynomialsPij ∈ ÔM ,a

[
Xq+1
X1

, · · · , Xn
X1

]
,

i = 1, . . . , s, j = 1, . . . , r , such that theFi (Y) :=
∑

j (σ̂
∗
a′Pij )(Y) · (Hj ◦ σ) ∈ I

represent the vertices ofN(I ). (This follows from Lemma 3.24 below, applied

with R = ÔM ,a

[
Xq+1
X1

, · · · , Xn
X1

]
; then Ô identifies with ÔM ′,a′ ∼= Fa′ [[Y ]], and

O /m`
O → Ô /m̂`

O is an isomorphism for each̀.) EachFi (Y) is the pullback by
σ of ∑

j

Pij

(
X;

Xq+1

X1
, · · · , Xn

X1

)
Hj (X) = (X1)−qi

∑
j

Qij (X)Hj (X) ,

for someqi ∈ N, whereQij := Xqi
1 Pij ∈ ÔM ,a

∼= Fa[[X]]. Etc.

Lemma 3.24. If m is a maximal ideal in a domain R, andO denotes the localiza-
tion of R at m, then R→ O /m`

O is surjective for anỳ ∈ N, where mO = m ·O .

Proof . For anyQ ∈ R\m, there isλ ∈ R such thatµ = 1− λQ ∈ m. Hence
(1 +µ + · · · + µ`−1)λQ = 1 modm`, which suffices. �

Remark 3.25. The diagram of initial exponents can be used to generalize the
geometric definition of invX in year zero given in Remark 1.11. Leta ∈ M and
let (x1, . . . , xn) denote a coordinate system ata, so thatÔM ,a

∼= k[[x1, . . . , xn]]
via the Taylor homomorphism. Letw = (w1, . . . , wn) be ann-tuple of positive
real numbers (“weights” for the coordinates). Forf (x) =

∑
fαxα ∈ k[[x]], we

define theweighted orderµw(f ) := min{〈w,α〉 : fα /= 0} (where 〈w,α〉 :=∑
wiαi ) and theweighted initial exponentexpw(f ) := min{α : fα /= 0}, where

the α ∈ Nn are totally ordered using lexicographic ordering of the sequences
(〈w,α〉, α1, . . . , αn). Set I = ÎX,a. Write Nw(I ) for the (weighted) diagram of
initial exponents{expw(f ) : f ∈ I }. If N ∈ D (n), we define theessential
variablesof N as the indeterminatesxj which occur (to positive power) in some
monomialxα, whereα ∈ V (the vertices ofN).

For the given coordinate systemx = (x1, . . . , xn), let d(x) denote the supre-
mum of n-tuples (d1, . . . , dn) ∈ (Q ∪ {∞})n, ordered lexicographically, such
that:

(1) 1 = d1 ≤ d2 ≤ · · · ≤ dn;
(2) x1, . . . , xr are the essential variables ofN(I ), for somer , andd1 = · · · =

dr = 1;
(3) N(I ) = Nw(I ), wherewj = 1/dj , j = 1, . . . , n.
HereN(I ) denotes the diagram with respect to the standard ordering (|α|, α1,

. . . , αn) of Nn. Set d = supd(x) (sup over all coordinate systems),d =
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(d1, . . . , dn). Then

invX (a) =
(

HX,a, 0;
d2

d1
, 0; . . . ;

dt

dt−1
, 0;∞

)
,

where dt is the last finitedi . As in 1.11, there is an explicit construction to
obtain coordinatesx such thatd(x) = d, and there is a correspondence between
the weighted initial ideals ofI with respect to two coordinate systems that realize
d.

Chapter II. The local construction; desingularization
in the hypersurface case

The local construction that we use to define our invariant invX and establish its
important properties (for example, invariance!) is presented in Sect. 4. Proofs of
the nontrivial assertions are deferred to Sect. 5. At a first reading, one can skip the
latter and go directly to Sect. 6 where, beginning with a presentation of inv1/2,
we use the local construction recursively to define invX and a corresponding
presentation, and we prove Theorem 1.14. In the hypersurface case, inv1/2(a)
(the orderνX,a of X at a) admits a very simple presentation, so we complete
the proof of desingularization for a hypersurface (and also Theorem 1.10; see
Remark 1.18).

4. The local construction

Let M denote a manifold overk. Consider the following data at a pointa ∈ M :

(4.1) N = Np(a): a germ ata of a regular submanifold of codimensionp;
H (a) = {(h, µh)}: a finite collection of pairs (h, µh), where eachh ∈ ON ,a

and eachµh is a nonnegative rational number such thatµh ≤ µa(h);
E (a): a collection of smooth hypersurfacesH 3 a such thatN and E (a)

simultaneously have only normal crossings, andN 6⊂ H , for all H ∈ E (a).

We call
(
Np(a),H (a),E (a)

)
an infinitesimal presentation(of codimension

p), and we define itsequimultiple locus(as a germ ata)

SH (a) := {x ∈ N : µx(h) ≥ µh, for all (h, µh) ∈ H (a)}.
Remark 4.2.We can assume (as we do below) that all “assigned multiplicities”
µk ∈ N because, given (4.1), there is an infinitesimal presentation which is
equivalent (in the sense of Definition 4.6) and has integralµh (cf. Construction
4.23). But one can work with rationalµh (as in [BM6]); this might be useful for
efficiency of calculation.

By a local blowing-upσ: M ′ → M over a neighbourhoodW of a ∈ M ,
we mean the composite of a blowing-upM ′ = BlC W → W with smooth centre
C ⊂ W, and the inclusionW ↪→ M . (W can also be understood as a germ ata.)
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Given an infinitesimal presentation (4.1), we consider morphismsσ: M ′ → M
of three types:

(4.3) (i) Admissible blowing-up.σ: M ′ = BlC W → W ↪→ M is a local
blowing-up over a neighbourhoodW of a with smooth centreC such thatC ⊂
SH (a) andC , E (a) simultaneously have only normal crossings.

(ii) Product with a line.σ: M ′ = W × k → W ↪→ M is a projection onto a
neighbourhoodW of a.

(iii) Exceptional blowing-up.σ: M ′ = BlC W → W ↪→ M is a local blowing-
up with centreC = H0 ∩ H1, whereH0,H1 ∈ E (a).

We introduce a transform
(
Np(a′),H (a′),E (a′)

)
of the infinitesimal pre-

sentation
(
Np(a),H (a),E (a)

)
by a morphism of each of these three types:

(4.4) (i) Let N ′ be the strict transform ofN = Np(a) by σ, and let a′ ∈
σ−1(a) such thata′ ∈ N ′ and µa′ (h′) ≥ µh, for all (h, µh) ∈ H (a), where
h′ = y−µh

exc h ◦ σ. A transform of type (i) is defined provided sucha′ exists. We
write σ also for the induced morphismN ′ → N .) SetNp(a′) = the germ ofN ′ at
a′, H (a′) = {(h′, µh)}, andE (a′) = {σ−1(C)} ∪ {H ′ : H ∈ E (a), a′ ∈ H ′},
whereH ′ is the strict transform ofH .

(ii) Let a′ = (a, 0) ∈ M × k. Set N ′ = N (a′) = the germ ofσ−1(N ) at a′,
H (a′) = {(h ◦ σ, µh)}, andE (a′) = {W × 0} ∪ {H ′ = σ−1(H ) : H ∈ E (a)}.

(iii) Let a′ denote (the unique point of)σ−1(a) ∩ H ′1, whereH ′ denotes the
strict transform ofH , for all H ∈ E (a). SetN ′ = Np(a′) = the germ ofσ−1(N ) at
a′, H (a′) = {(h◦σ, µh)}, andE (a′) = {σ−1(C)}∪{H ′ : H ∈ E (a), a′ ∈ H ′}.

It is clear that, in each case above,
(
Np(a′),H (a′),E (a′)

)
is an infinitesimal

presentation ata′. We will use the same notation
(
N ′ = Np(a′),H (a′),E (a′)

)
for the transform of

(
Np(a),H (a),E (a)

)
by a sequence of morphisms of types

(i), (ii), (iii).

Remark 4.5.A transformation of type (i) may be nontrivial even ifN = M and
codimC = 1, so thatσ = identity. In (iii), if H ∈ E (a), H /= H0,H1, thenC 6⊂ H
andH ′ = σ−1(H ); likewise, N ′ is the strict transform ofN (by the assumptions
in (4.1)).

Definition 4.6. Given E (a), we say that two infinitesimal presentations
(
N =

Np(a),F (a),E (a)
)

and
(
P = Pq(a),H (a),E (a)

)
are equivalent (with re-

spect to transformations of types(i), (ii) and (iii)) if:
(1) SF (a) = SH (a).
(2) If σ is an admissible blowing-up (i) and a′ ∈ σ−1(a), then a′ ∈ N ′

and µa′ (y
−µf
exc f ◦ σ) ≥ µf , for all (f , µf ) ∈ F (a), if and only if a′ ∈ P′ and

µa′ (y
−µh
exc h ◦ σ) ≥ µh, for all (h, µh) ∈ H (a).

(3) After a transformation of type (i), (ii) or (iii),
(
N ′,F (a′),E (a′)

)
is equiv-

alent to
(
P′,H (a′),E (a′)

)
.

Definition 4.6 makes sense recursively. We will writes(i,ii ,iii) or merelys
(when there is no possibility of confusion) for this notion of equivalence. We
will also write

(
N ,F (a),E (a)

)
s(i,ii)

(
P,H (a),E (a)

)
when we have (1), (2)
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and the following weaker version of (3): After a transformation of type (i) or
(ii),

(
N ′,F (a′),E (a′)

)
s(i,ii)

(
P′,H (a′),E (a′)

)
. We will use these ideas of

equivalence only withq = p or q = p+1. (In practice, a calculation of invX might
considerably simplify when it is possible to replace an infinitesimal presentation
by an equivalent one in higher codimension.)

Invariants of an infinitesimal presentation. We now introduce several important
invariants of the equivalence classes of infinitesimal presentations of the same
codimension. These invariants will be used to define the successive entriesνr +1(a)
of invX (a).

Definition 4.7. We defineµ(a) = µH (a), 1≤ µ(a) ≤ ∞, as

µH (a) = min
(h,µh)∈H (a)

µa(h)
µh

.

Proposition 4.8. µ(a) depends only on the equivalence class of
(
N ,H (a),E (a)

)
with respect to transformations (i), (ii).

In other words: GivenE (a), let
(
N i ,H i (a),E (a)

)
, i = 1, 2, be infinitesimal

presentations of the same codimensionp. Write µi (a) = µH i (a), i = 1, 2. Then
µ1(a) = µ2(a) if the presentations are equivalent in the senses(i,ii) (and therefore,
of course, if the presentations are equivalent in the senses(i,ii ,iii) ). Proposition
4.8 will be proved in Sect. 5.

Definitions 4.9. Suppose thatµ(a) < ∞. If H ∈ E (a), we defineµH (a) =
µH (a),H as

µH (a),H = min
(h,µh)∈H (a)

µH ,a(h)
µh

,

whereµH ,a(h) denotes the order of h along H∩N at a. We defineν(a) = νH (a) ≥
0 as

ν(a) = µ(a)−
∑

H∈E (a)

µH (a) .

(We also putν(a) = ∞ if µ(a) = ∞.)

Proposition 4.11 shows that theµH (a) andν(a) are invariants of the equiv-
alence class of our infinitesimal presentation

(
Np(a),H (a),E (a)

)
(where the

codimensionp is fixed) under an equivalence relations∗ which is stronger than
s(i,ii) but weaker thans(i,ii ,iii) . (“s∗ is weaker thans(i,ii ,iii) ” means that the
equivalence class of an infinitesimal presentation with respect tos(i,ii ,iii) is a
subset of that with respect tos∗.) We needs∗ because Construction 4.23 below
survives transformations as allowed bys∗ (Proposition 4.24) but perhaps not an
arbitrary sequence of transformations (i), (ii), (iii).

Definition 4.10. We defines∗ by allowing in 4.6 only the transforms induced by
certain sequences of morphisms of types (i), (ii), (iii); namely,
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→ Mj
σj−→ Mj−1 → · · · σi +1−→ Mi → · · · → M0 = M

H (aj ) H (aj−1) H (ai ) H (a0) = H (a)

where, ifσi +1, . . . , σj are exceptional blowings-up (iii), then i≥ 1 and σi is of
either type (iii) or (ii). In the latter case,σi : Mi = W × k → W ↪→ Mi−1, each
σk+1, k = i , . . . , j − 1, is local blowing-up with centre Ck = H k

0 ∩ H k
1 where

H k
0 ,H

k
1 ∈ E (ak), ak+1 = σ−1

k+1(ak) ∩ H k+1
1 , and we require that the Hk0 , H k

1 be
determined byσi and some fixed H∈ E (ai−1) inductively in the following way:
H i

0 = W × 0, H i
1 = σ−1

i (H ), and, for k= i + 1, . . . , j − 1, H k
0 = σ−1

k (Ck−1), H k
1 =

the strict transform of Hk−1
1 by σk.

Proposition 4.11. Suppose thatµ(a) <∞. ThenµH (a), H ∈ E (a), and therefore
alsoν(a) depend only on the equivalence class of

(
N ,H (a),E (a)

)
with respect

to s∗.

The inductive construction. The successive entriesνr +1(a) of invX (a) will
be defined asνHr (a) for equivalence classes of certain infinitesimal presenta-
tions

(
Np+r (a),Hr (a), Er (a)

)
constructed inductively in increasing codimen-

sion. Semicontinuity of invX (a) depends on choosing the local data in a “semi-
coherent” way; see 4.14. The following proposition (proved in Sect. 5) is the
main tool in the induction on codimension (cf. 4.16).

Proposition 4.12. Let
(
N ,F (a),E (a)

)
=
(
Np+r (a),Fr +1(a),Er +1(a)

)
denote

an infinitesimal presentation (4.1) of codimension p+ r ≥ 0. Let m= n − p− r .
Assume thatµF (a) = 1 (i.e., there is(f∗, µf∗ ) ∈ F (a) such thatµa(f∗) = µf∗ )
and that there is a regular coordinate system(x1, . . . , xm) for N at a, in which
∂df∗/∂xd

m is invertible at a (where d= µf∗ ) andE (a)∩N =
{{xi = 0} : i ∈ I

}
,

where I⊂ {1, . . . ,m− 1}. (E (a) ∩ N means{H ∩ N : H ∈ E (a)}.) Then:
(1) After any sequence of transformations (i), (ii), and (iii),µF (a′) = 1. (In

fact,µa′ (f ′∗) = µf ′∗ = d, where f′∗ denotes the transform of f∗ in F (a′).)
(2) Put z= ∂d−1f∗/∂xd−1

m . ThenF (a) ∪ {(z, 1)}s(i,ii ,iii) F (a).
(3) After any sequence of transformations (i), (ii), and (iii),{z′ = 0} and

E (a′) ∩ N ′ simultaneously have only normal crossings, and{z′ = 0} 6∈ E (a′) ∩
N ′.

Remarks 4.13.Condition (3) holds for anyz ∈ ON ,a with µa(z) = 1 which
satisfies the analogous condition ata. The proof of 4.12 will show that, after
an exceptional blowing-up (iii),z′ = z ◦ σ coincides with the strict transform of
z; likewise, if (f , µf ) ∈ F (a) andµa(f ) = µf , then yexc does not factor from
f ′ = f ◦ σ. Any infinitesimal presentation withµF (a) = 1 andE (a) = ∅ satisfies
the assumptions of 4.12 (cf. Example 4.16).

Definition and remarks 4.14. Let U be a regular coordinate chart inM . Suppose
a ∈ U . We let O (U )a denote the ring of quotients of elements ofO (U ) =
OM (U ) with denominators not vanishing ata. (In the case of schemes,O (U )a =
OM ,a.) If V is a Zariski-open subset ofU , we will write O (U )V to denote the
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ring of quotients of elements ofO (U ) with denominators vanishing nowhere in
V .

The possibility of choosing local presentations of invX in a “semicoherent”
way (see 6.4) will depend on the following observations: Assume in 4.12 that
all of the given data is defined inO (U )a. In other words,N = V (z1, . . . , zp+r ),
where (z1, . . . , zp+r are linearly independent modm2

a and) eachzj ∈ O (U )a;
also eachf in F (a) and each coordinate functionxi on N is the restriction
to N of an element ofO (U )a. By Lemma 3.5, thenz = ∂d−1f∗/∂xd−1

m is
also the restriction toN of an element ofO (U )a. It follows that there is a
Zariski-open neighbourhoodV of a in U such that: (1) Eachzj ∈ O (U )V , and
z1, . . . , zp+r are linearly independent modm2

x , for all x ∈ V (z1, . . . , zp+r ) ⊂ V .
(In particular, N extends to a regular submanifold ofV .) (2) The f , the xi ,
and z are all (restrictions toN of) elements ofO (U )V , and (x1, . . . , xm) is a
regular coordinate system onN ⊂ V . (3) E (a) ∩ N =

{{xi = 0} : i ∈ I
}

, and
∂z/∂xm = ∂df∗/∂xd

m is invertible at every point ofSF = {x ∈ N : µx(f ) ≥
µf , for all (f , µf ) ∈ F (a)}. In particular,

(
Np+r (a),F (a),E (a)

)
induces an

infinitesimal presentation
(
Np+r (x),F (x),E (x)

)
satisfying the hypotheses of

4.12, at eachx ∈ SF .

Let σ: M ′ → M be a blowing-up with centreC . Assume thatC ∩ U is a
coordinate subspace ofU andC ∩V ⊂ SF . It follows from the local-coordinate
description of blowing-up (Sect. 3) thatσ−1(U ) is a union of finitely many regular
coordinate chartsU ′ of M ′ such that, ifa′ ∈ σ−1(a)∩U ′ andµa′ (y

−µf
exc f ◦σ) ≥

µf , for all (f , µf ) ∈ F (a), then the transform
(
Np+r (a′),F (a′),E (a′)

)
(type

(i)) is given by data inO (U ′)a′ .

Lemma 4.15. Consider N andE (a) as in (4.1). Let z∈ ON ,a, µa(z) = 1, and
let C be (a germ at a of) a regular submanifold of N . Assume that C ,E (a) and
V (z) ⊂ N simultaneously have only normal crossings, and V(z) 6∈ E (a) ∩ N .
Then there is a regular coordinate system x= (x1, . . . , xm) for N at a, such that
x(a) = 0 and: (1) z = xm. (2) For all H ∈ E (a), H ∩ N = V (xi ), for some
i = 1, . . . ,m− 1. (3) C = V (x`, ` ∈ J ), for some J⊂ {1, . . . ,m}.

Moreover, if U is a regular coordinate chart, a∈ U and N , z , C are defined
by functions inO (U )a, then there is a Zariski-open neighbourhood V of a in U
so that the conclusion above holds in N∩ V , with each xi (the restriction of) an
element ofO (U )V .

The proof is elementary. The example following shows the way we will obtain
infinitesimal presentations satisfying the hypotheses of 4.12 in our inductive
construction.

Example 4.16.Suppose
(
Np+r (a),Gr +1(a),Er +1(a)

)
is an infinitesimal presenta-

tion ata ∈ M , with Er +1(a) = ∅ andµGr +1(a) = 1. Let
(
Np+r (a′),Gr +1(a′),Er +1(a′)

)
be its transform by a finite sequence of admissible blowings-up as in (4.4)(i). Then(
Np+r (a′), Gr +1(a′),Er +1(a′)

)
satisfies the assumptions of 4.12. (This follows

from the proof of 4.12: Begin with suitable coordinates ata (whereEr +1(a) = ∅)
and transform.)
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In particular, suppose that
(
Np+r (a),Gr +1(a),Er (a)

)
is an infinitesimal pre-

sentation withµGr +1(a) = 1. SetEr +1(a) = Er (a) and define a transformation
of Er +1(a) by an admissible blowing-up (4.3)(i) as follows:Er +1(a′) := {H ′ :
H ∈ Er +1(a), a′ ∈ H ′}. Consider the transforms

(
Np+r (a′),Gr +1(a′),Er (a′)

)
and

also Er +1(a′) ⊂ Er (a′) by a finite sequence of admissible blowings-up. Define
Er +1(a′) := Er (a′) − Er +1(a′) and Fr +1(a′) := Gr +1(a′) ∪ (Er +1(a′), 1

)
, where(

Er +1(a′), 1
)

:= {(`H , 1) : H ∈ Er +1(a′)} and `H ∈ ON ′,a′ denotes a generator
of the ideal ofH ∩ N ′ = H ∩ Np+r (a′). Then

(
Np+r (a′),Gr +1(a′),Er +1(a′)

)
and

therefore also
(
Np+r (a′),Fr +1(a′),Er +1(a′)

)
are infinitesimal presentations which

satisfy the assumptions of Proposition 4.12.

Now suppose we have an infinitesimal presentation
(
Np+r (a),Fr +1(a),Er +1(a)

)
of codimensionp + r , which satisfies the following conditions from Proposition
4.12:

(4.17) (1)µFr +1(a) = 1.
(2) There existsz ∈ ON ,a, N = Np+r (a), such thatµa(z) = 1 andFr +1(a) ∪

{(z, 1)}s(i,ii ,iii) Fr +1(a).
(3) V (z) andEr +1(a) ∩ Np+r (a) simultaneously have only normal crossings,

andV (z) 6∈ Er +1(a) ∩ Np+r (a).

We associate to
(
Np+r (a),Fr +1(a),Er +1(a)

)
an equivalent infinitesimal pre-

sentation, in codimensionp + r + 1:

Construction 4.18.Define Np+r +1(a) := V (z) ⊂ Np+r (a). Then Np+r +1(a) and
Er +1(a) simultaneously have only normal crossings, andNp+r +1(a) 6⊂ H , for all
H ∈ Er +1(a). Choose regular coordinatesx = (x1, . . . , xm = z) for N = Np+r (a) at
a, as in 4.15. For each (f , µf ) ∈ Fr +1(a), consider the following formal expansion
(cf. Remark 3.7):

f (x) =
∑

0≤q<µf

cf ,q(x̃)zq + cf ,µf (x)zµf ,

where x̃ = (x1, . . . , xm−1). Recall that eachcf ,q(x̃), 0 ≤ q < µf , is the element

of O
Ñ ,a

, Ñ = Np+r +1(a), induced by
1
q!

∂qf
∂xq

m
. Let Hr +1(a) denote the collection

of pairs

Hr +1(a) := {(cf ,q, µf − q) : (f , µf ) ∈ Fr +1(a), 0≤ q < µf } .
Proposition 4.19.

(
Np+r (a),Fr +1(a),Er +1(a)

)
s(i,ii ,iii)

(
Np+r +1(a),Hr +1(a),

Er +1(a)
)
. Moreover, after any sequence of transformations of types (i), (ii) and

(iii) (4.4), the transform
(
Np+r +1(a′),Hr +1(a′),Er +1(a′)

)
of
(
Np+r +1(a),Hr +1(a),

Er +1(a)
)

is associated to
(
Np+r (a′),Fr +1(a′),Er +1(a′)

)
as in Construction 4.18.

The proof is in Sect. 5. In general, of course,µHr +1(a) /= 1.

Remark 4.20. If
(
Np+r (a),Fr +1(a),Er +1(a)

)
is defined by data inO (U )a, then

so is
(
Np+r +1(a),Hr +1(a),Er +1(a)

)
(since eachcf ,q(x̃) =

1
q!

∂qf
∂xq

m
restricted to

Ñ ) .
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We now put

(4.21) µr +2(a) = µHr +1(a)

(cf. Definition 4.7); thus 1≤ µr +2(a) ≤ ∞. By Propositions 4.8 and 4.19,µr +2(a)
depends only on the equivalence class of

(
Np+r (a),Fr +1(a),Er +1(a)

)
with respect

to s(i,ii) (and is therefore, of course, also an invariant of the equivalence class
with respect tos∗).

If µr +2(a) <∞, then we set

(4.22)

µr +2,H (a) = µHr +1(a),H , H ∈ Er +1(a) ,

νr +2(a) = µr +2(a)−
∑

H∈Er +1(a)

µr +2,H (a)

(cf. Definitions 4.9); thusνr +2(a) ≥ 0. We also setνr +2(a) = ∞ if µr +2(a) = ∞.
By Propositions 4.11 and 4.19, theµr +2,H (a) andνr +2(a) are invariants of (i.e.,
depend only on) the equivalence class of

(
Np+r (a),Fr +1(a),Er +1(a)

)
with respect

to s∗.

Construction 4.23. Whenνr +2(a) <∞, we now make the following construction
beginning with our infinitesimal presentation

(
Np+r (a),Fr +1(a),Er +1(a)

)
(satisfy-

ing the conditions (4.17) above). DefinẽN = Np+r +1(a) andHr +1(a) = {(h, µh)}
as in Construction 4.18. We can assume that allµh are equal; sayµh = d ∈ N,
for all h. (For example, we can taked = maxµh! and replace each (h, µh) by
(hd/µh , d) to obtain a presentation which is equivalent with respect tos(i,ii ,iii) .)
For eachH ∈ Er +1(a), we haveH ∩ Ñ = V (xi ), for somei = 1, . . . ,m− 1; say
xi = xH . Set

Dr +2(a) =
∏

H∈Er +1(a)

x
µr +2,H (a)
H ;

thus D = Dr +2(a) is a monomial in the coordinates (x1, . . . , xm−1) of Ñ with
rational exponents. Clearly,Dd (which has exponents inN) is the greatest com-
mon divisor of theh in Hr +1(a) that is a monomial inxH , H ∈ Er +1(a).
Define Gr +2(a) = {(g, µg)}, where eachg ∈ O

Ñ ,a
and eachµg ∈ N, as the

collection of pairs{(g, dνr +2(a)
)
, for all h = Ddg in Hr +1(a), together with(

Dd,
(
1− νr +2(a)

)
d
)

provided thatνr +2(a) < 1}. (Gr +2(a) := {(Dd, d)} in the
caseνr +2(a) = 0.) Then

(
Np+r +1(a),Gr +2(a),Er +1(a)

)
is an infinitesimal presen-

tation of codimensionp + r + 1. If νr +2(a) > 0, thenµGr +2(a) = 1. (The inductive
construction terminates unless 0< νr +2(a) <∞.)

Of course,SGr +2(a) ⊂ SHr +1(a) = SFr +1(a). More precisely:
(
Np+r +1(a),Hr +1(a),

Er +1(a)
)

induces a presentation
(
Np+r +1(x),Hr +1(x),Er +1 (x)

)
at x, for x in a

neighbourhood ofa in SHr +1(a). Clearly,SGr +2(a) = SFr +1(a),νr +2(a), where

SFr +1(a),νr +2(a) := {x ∈ SFr +1(a) : νr +2(x) = νr +2(a)} .
A local blowing-up which is admissible (i.e., a morphism of type (i)) for(

Np+r (a),Fr +1(a),Er +1(a)
)

is admissible for
(
Np+r +1(a),Gr +2(a),Er +1(a)

)
if and

only if its centre⊂ SGr +2(a). The following proposition is proved in Sect. 5.
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Proposition 4.24. Consider a sequence of transformations (i), (ii) and (iii) of(
Np+r (a), Fr +1(a),Er +1(a)

)
as allowed bys∗ (Definition 4.10). If we assume re-

cursively that the centres of the transformations of type (i) are admissible for the
corresponding transforms of

(
Np+r +1(a),Gr +2(a),Er +1(a)

)
, then each succeeding

transform
(
Np+r +1(a′),Gr +2(a′),Er +1(a′)

)
is associated to

(
Np+r (a′),Fr +1(a′),

Er +1(a′)
)

as in 4.23.

In particular, the equivalence class of
(
Np+r +1(a),Gr +2(a),Er +1(a)

)
with re-

spect tos∗ depends only that of
(
Np+r (a),Fr +1(a),Er +1(a)

)
. It follows that if

Er +2(a) ⊂ Er +1(a), then the equivalence class of
(
Np+r +1(a),Gr +2(a),Er +2(a)

)
with respect tos∗ depends only on that of

(
Np+r (a),Fr +1(a),Er +1(a)

)
(and on

Er +2(a)) (cf. 4.16).

Remark 4.25. If
(
Np+r (a),Fr +1(a),Er +1(a)

)
is given by data inO (U )a (as

in 4.14), then so is
(
Np+r +1(a),Gr +2(a),Er +1(a)

)
. This follows from 4.20 since

passing from
(
Np+r +1(a),Hr +1(a),Er +1(a)

)
to the latter involves only division

by the regular functionDd.

5. Proofs

We prove Propositions 4.8, 4.11, 4.12, 4.19 and 4.24. We follow the notation of
Sect. 4.

Lemma 5.1. Let a ∈ M and letσ: M ′ → W ↪→ M be a local blowing-up over
a neighbourhood W of a with smooth centre C3 a. Let a′ ∈ σ−1(a). Suppose

that f ∈ OM ,a. Set f′ = y
−µC,a(f )
exc f ◦ σ ∈ OM ′,a′ , where yexc denotes a generator

of Iσ−1(C),a′ . If µC,a(f ) = µa(f ), thenµa′ (f ′) ≤ µa(f ).

Proof. This is an elementary Taylor series computation (cf. [BM6, Lemma 2].)
�

Proof of Proposition 4.8.Clearly,µ(a) = ∞ if and only if SH (a) = Np(a); i.e., if
and only if SH (a) is (a germ of) a submanifold of codimensionp in M .

Suppose thatµ(a) < ∞. Let P0 = W × k → W ↪→ M be a morphism
of type (ii) at a ∈ W, and consider the transform

(
N (c0),H (c0),E (c0)

)
of(

N ,H (a),E (a)
)

at c0 = (a, 0) ∈ P0 (cf. (4.3), (4.4)). Letγ0 denote the arc
γ0(t) = (a, t) in P0. Consider the sequence of blowings-up

−→ Pβ+1
σβ+1−→ Pβ −→ · · · −→ P1

σ1−→ P0

with successive centrescβ = γβ(0), whereγβ+1 is defined inductively as the lifting
of γβ to Pβ+1. (In other words,σ−1

β+1(cβ)∩Γβ+1 = {cβ+1} for all β ≥ 0, whereΓ0 =
{a}×k andΓβ+1 is the strict transform ofΓβ by σβ+1.) Thenσβ+1 induces a trans-
formation of type (i),

(
N (cβ),H (cβ),E (cβ)

) 7→ (
N (cβ+1),H (cβ+1),E (cβ+1)

)
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(i.e., µcβ+1(y−µh
exc h ◦ σβ+1) ≥ µh, for all (h, µh) ∈ H (cβ); cf. (4.4)(i)), succes-

sively for eachβ ≥ 0: This follows from the transformation formula in power
series (cf. proof of Lemma 5.2 below).

We introduce a subsetS of N×N depending only on the equivalence class of(
Np(a),H (a),E (a)

)
with respect tos(i,ii) , as follows: First, say that (β, 0) ∈ S,

β ≥ 1, if after β blowings-up as above, there is (a germ of) a submanifoldW0

of codimensionp in the hypersurfaceσ−1
β (cβ−1) such thatW0 ⊂ SH (cβ ). (Then

necessarilyW0 = σ−1
β (cβ−1)∩N (cβ) andW0, E (cβ) have only normal crossings.)

In this case, we can blow upPβ locally with centreW0. Put Q0 = Pβ , d0 = cβ
and δ0 = γβ . Inductively, say that (β, α) ∈ S, α ≥ 1, if (β, α − 1) ∈ S and the
following holds: Letτα: Qα → Qα−1 be the local blowing-up with centreWα−1,
andδα be the lifting ofδα−1 by τα. Then:

(1) τα induces a transformation of type (i),
(
N (dα−1),H (dα−1),E (dα−1)

) 7→(
N (dα),H (dα),E (dα)

)
; i.e.,µdα (y−µh

exc h◦τα) ≥ µh, for all (h, µh) ∈ H (dα−1).
(2) There exists a submanifoldWα of codimensionp in the smooth hypersur-

faceτ−1
α (Wα−1) such thatWα ⊂ SH (dα). (Necessarily,Wα = τ−1

α (Wα−1)∩N (dα);
clearly Wα andE (dα) simultaneously have only normal crossings.)

SinceS depends only on the equivalence class of
(
Np(a),H (a),E (a)

)
with

respect tos(i,ii) , the proposition is a consequence of the following lemma.�

Lemma 5.2. S = ∅ if and only ifµ(a) = 1. If S /= ∅, then

S = {(β, α) ∈ N× N : β
(
µ(a)− 1

)− α ≥ 1} .

Lemma 5.2 specifiesµ(a) uniquely; in the case that 1< µ(a) < ∞, as
µ(a) = 1 + sup(β,α)∈S(α + 1)/β.

Proof of Lemma 5.2.We can choose a regular coordinate system (x1, . . . , xm) for
N = Np(a) (m = n−p) such thata = 0 and, for eachH ∈ E (a), H ∩N = V (xi ),
for somei = 1, . . . ,m. We will write (x1, . . . , xm, x0) for the corresponding regular
coordinate system forN (c0) = N × k. There is a regular coordinate system
(y1, . . . , ym, y0) for N (c1) in which σ1: N (c1) → N (c0) is given byx0 = y0 and
x` = y0y`, ` = 1, . . . ,m. In these coordinates,c1 = 0, Γ1 = V (y1, . . . , ym), and

H (c1) = {(h′, µh′ ) = (y−µh
0 h ◦ σ1, µh) : (h, µh) ∈ H (c0)} .

(Eachh = h(x1, . . . , xm), independent ofx0.)
We can assume that allµh are equal; sayµh = d ∈ N, for all (h, µh) ∈ H (c0).

If µ(a) <∞, then theh′ in H (c1) admit y(µ(a)−1)d
0 as greatest common divisor

which is a power ofy0 = yexc. Write h′ = y(µ(a)−1)d
0 h̃′, for all h′, and set̃µ(c1) =

min µc1(h̃′)/d. Takeh′ such that̃h′ realizes the min; it is clear from the formal
expansions that the initial form ofh′ equalsthat of h, so µ̃(c1) = µ(c0) = µ(a).

It follows that, after β blowings-up σ1, . . . , σβ as above, the transform
H (cβ) = {(h′, d)} of H (c0) satisfies the following condition: There is a
regular coordinate system (y1, . . . , ym, y0) for N (cβ) in which σ1 ◦ · · · ◦ σβ is
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given by x0 = y0 and x` = yβ0 y`, ` = 1, . . . ,m, Γβ = V (y1, . . . , ym), and each
h′ = yβ(µ(a)−1)d

0 h̃′, where thẽh′ do not admity0 = yexc as common factor.
Let W0 = σ−1

β (cβ−1)∩N (cβ). ThenW0 ⊂ SH (cβ ) if and only if µW0,cβ (h′) ≥
d, for all h′ in H (cβ). Since thẽh′ do not admity0 as common factor,W0 ⊂
SH (cβ ) if and only if β

(
µ(a) − 1

) ≥ 1. In particular,µ(a) = 1 if and only if
W0 6⊂ SH (cβ ) after any numberβ of blowings-up as described.

Now suppose thatW0 ⊂ SH (cβ ), and considerτ1: Q1 → Q0 = Pβ as in the
proof of Proposition 4.8. There are regular coordinates (z1, . . . , zm, z0) for N (d1)
in which z0 = zexc and τ1: N (d1) → N (d0) = N (cβ) is given by the identity
transformationy` = z̀ , ` = 0, . . . ,m. In the coordinates (z1, . . . , zm, z0), we have
d1 = 0,

H (d1) = {(h′, µh′ ) = (z−d
0 h(z), d) : (h, µh = d) ∈ H (d0) = H (cβ)} ,

and eachh̃′ = h̃(z). Thus h′ = zβ(µ(a)−1)d−d
0 h̃′, for all h′ in H (d1), where

the h̃′ do not admitz0 as common factor. Afterα such blowings-upτ1, . . . , τα,
H (dα) = {(h′, d)}, where eachh′ = zβ(µ(a)−1)d−αd

0 h̃′, and theh̃′ do not admit
z0 as common factor. As above,Wα = τ−1

α (Wα−1)∩N (dα) ⊂ SH (dα) if and only
if β

(
µ(a)− 1

)− α ≥ 1. �

Proof of Proposition 4.11.Let H ∈ E (a). Let σ0: P0 = W × k → W ↪→ M be a
morphism of type (ii) ata ∈ W. Puta0 = (a, 0), H 0

0 = W×0, H 0
1 = σ−1

0 (H ). We
follow σ0 by a sequence of morphisms of type (iii) (exceptional blowings-up),

−→ Pj +1
σj +1−→ Pj −→ · · · σ1−→ P0

σ0−→ M ,

where eachσj +1, j ≥ 0, denotes the blowing-up with centreCj = H j
0 ∩ H j

1 ,
and H j +1

0 = σ−1
j +1(Cj ), H j +1

1 = the strict transform ofH j
1 . Let γ0 denote the arc

γ0(t) = (a, t) in P0, and, for eachj , takeaj +1 = γj +1(0), whereγj +1 is the lifting
of γj by σj +1. The sequence of morphismsσj induces a sequence of transforms(
N (aj ),H (aj ),E (aj )

)
of our infinitesimal presentation

(
N (a),H (a),E (a)

)
,

as allowed in the definition ofs∗ (4.10).
There is a regular coordinate system (x1, . . . , xm) for N = Np(a) (m = n− p)

such thata = 0 and, for eachK ∈ E (a), K ∩ N = V (xi ) for somei = 1, . . . ,m
(we setxi = xK ). Write (x1, . . . , xm, x0) for the corresponding regular coordinate
system forN (a0) = N × k. We can assume thatx1 = xH . Then there is a regular
coordinate system (y1, . . . , ym, y0) for N (a1) in whichσ1: N (a1) → N (a0) is given
by x0 = y0, x1 = y0y1, x` = y`, for ` = 2, . . . ,m, and in whicha1 = 0, y1 = yH (yH

meansyH 1
1

). Proceeding inductively, there are regular coordinates (y1, . . . , ym, y0)

for eachN (aj ) in which aj = 0 andσ1 ◦σ2 ◦ · · · ◦σj : N (aj ) → N (a0) is given by

x0 = y0 , xH = x1 = yj
0y1 = yj

0yH , x` = y` , ` = 2, . . . ,m .

We can assume that allµh are equal; sayµh = d ∈ N, for all (h, µh) ∈ H (a).
Set D =

∏
K∈E (a)

xµK (a)
K . Thus Dd is a monomial in (x1, . . . , xm) with exponents
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in N, and Dd is the greatest common divisor of theh in H (a) which is a
monomial inxK , K ∈ E (a). In particular, for someh = Ddg in H (a), g = gH

is not divisible byx1 = xH . Therefore, there existsi ≥ 1 such thatµaj (gH ◦πj ) =
µai (gH ◦ πi ) for all j ≥ i , whereπj := σ0 ◦ σ1 ◦ · · · ◦ σj . (We can simply takei
to be the least order of a monomial not involvingxH in the Taylor expansion of
gH .)

On the other hand, for eachh = Ddg in H (a), µaj (g ◦ πj ) increases as
j → ∞ unlessg is not divisible byxH . Therefore, we can chooseh = DdgH ,
as above, andi large enough so that we also haveµ(aj ) = µaj (h ◦ πj )/d, for all
j ≥ i . Clearly, if j ≥ i , thenµH (a) = µ(aj +1)− µ(aj ), so the result follows from
Proposition 4.8. �

Proof of Proposition 4.12.We can assume thata = 0 in the given coordinate
system (x1, . . . , xm) for N (i.e., eachxi (a) = 0). For each (f , µf ) ∈ F (a), the
Taylor expansion off at a with respect to these coordinates can be written (cf.
Remark 3.7) as

(5.3) f (x) =
∑

0≤q<µf

cf ,q(x̃)xq
m + cf ,µf (x)x

µf
m ,

where x̃ := (x1, . . . , xm−1) andµa(cf ,q) ≥ µf − q, 0 ≤ q < µf . By hypothesis,
cf∗,µf∗ is invertible.

Set z = ∂d−1f∗/∂xd−1
m , where d = µf∗ . By the formal implicit function

theorem,

(5.4) z = u(x)
(
xm − ϕ(x̃)

)
,

whereu us a unit. We introduce a formal coordinate change,

x′` = x`, ` = 1, . . . ,m− 1, x′m = xm − ϕ(x̃) .

Note.Suppose thatg(x) = g(x1, . . . , xm) is a formal power series. Writeg(x) =
g′(x′) in the new coordinatesx′; i.e., g′(x′) = g

(
x̃′, x′m + ϕ(x̃′)

)
. Then, for all

q ∈ N, ∂qg′(x′)/∂x′m
q = ∂qg(x)/∂xq

m. In particular, by (5.4),

(5.5)
∂d−1f ′∗
∂x′m

d−1 s x′m

(s means = up to an invertible factor).
Therefore, after aformal coordinate change as above, we can assume (drop-

ping primes) that in (5.3) above,µa(cf ,q) ≥ µf − q, 0 ≤ q < µf , cf∗,d is
invertible, andcf∗,d−1 = 0 (by (5.5)); moreover, eachcf ,q, 0≤ q < µf , regarded

as an element ofÔN ,a/(z)ÔN ,a, is (a germ ata of) a regular function on the reg-
ular submanifoldV (z) ⊂ N . (x̃ = (x1, . . . , xm−1) is a regular coordinate system
for V (z).)

In particular,SF (a) ⊂ V (z). It follows that (as germs ata)

SF (a) = {x ∈ V (z) : µx(cf ,q) ≥ µf−q , 0≤ q < µf , for all (f , µf ) ∈ F (a)} .
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The effect of an admissible blowing-up.Let σ: M ′ = BlC W → W ↪→ M be
a local blowing-up with smooth centreC ⊂ SF (a). By Lemma 4.15, we can
assume thatC = V (z, xk , k ∈ I ) ⊂ N , where I ⊂ {1, . . . ,m− 1}. There is a
neighbourhoodU of a in N , in which (x1, . . . , xm−1, z) form a regular coordinate
system. LetN ′ denote the strict transform ofN by σ. Over U , σ: N ′ → N can
be identified withU ′ = BlC U → U . Let k ∈ I and letU ′k = U ′\V (xk)′, where
V (xk)′ is the strict transform ofV (xk) ⊂ U . Along the fibreσ−1(a) in U ′k , σ is
given by a formal coordinate substitution

xk = yk , x` = yky`, ` ∈ I ∪ {m}\{k}, x` = y`, ` 6∈ I ∪ {m} .
Although ym here is a formal variable,y1, . . . , ym−1 are regular functions on
U ′k ; the fibreσ−1(a) is given in U ′k by yk = 0 andy` = 0, ` 6∈ I ∪ {m}. The
above coordinate transformation makes sense as a formal substitution at any
a′ ∈ σ−1(a) (wherey`, ` ∈ I ∪ {m}\{k} need not be zero ata′).

Let a′ ∈ σ−1(a)∩U ′k . At a′, z′ := y−1
k (z ◦ σ) s ym and, for (f , µf ) ∈ F (a),

f ′(y) := y
−µf
k (f ◦ σ)(y) =

∑
0≤q<µf

cf ′,q(ỹ)yq
m + cf ′,µf

(y)y
µf
m ,

where cf ′,µf
= cf ,µf ◦ σ and cf ′,q = y

−(µf−q)
k cf ,q ◦ σ̃, 0 ≤ q < µf . (We write

σ = (σ1, . . . , σm) and (σ1, . . . , σm−1) = σ̃.) In particular,

1
d!

∂d−1f ′∗
∂yd−1

m
= ym

(
cf ′∗,d + ykym(· · ·)) .

Sinceyk vanishes andcf ′∗,d is invertible ata′, ∂d−1f ′∗/∂yd−1
m ∼ z′.

Thereforeµa′ (f ′) ≥ µf for all f ∈ F (a) (i.e., σ induces a transformation of
type (i) ata′) if and only if a′ ∈ V (z′) andµa′cf ′,q ≥ µf − q, 0≤ q < µf , for
all (f , µf ) ∈ F (a). In this case, we haveµF (a′) = 1 andSF (a′) = {y ∈ V (z′) :
µy(cf ′,q) ≥ µf ′ − q, 0 ≤ q < µf ′ , for all (f ′, µf ′ ) = (f ′, µf ) ∈ F (a′)}. Clearly,
E (a′) ∩ N ′ comprisesV (yk) and eachV (y`), 1≤ ` ≤ m− 1 (̀ /= k), such that
V (x`) ∈ E (a) ∩ N .

On the other hand, for anya′ ∈ σ−1(a), if σ induces a transformation of
type (i) at a′, then a′ ∈ U ′k , for somek ∈ I : To see this, suppose thata′ ∈
U ′\⋃k∈I U ′k . Thenσ is given formally ata′ by the substitutionx` = y`, ` 6∈ I ,
andx` = y`ym, ` ∈ I . For each (f , µf ) ∈ F (a),

f ′(y) := y
−µf
m (f ◦ σ)(y) =

∑
0≤q<µf

cf ′,q(y) + cf ′,µf
(y) ,

where cf ′,µf
= cf ,µf ◦ σ and cf ′,q = y

−(µf−q)
m cf ,q ◦ σ, 0 ≤ q < µf . Since

µC,a(cf ,q) ≥ µf − q ≥ 1, it is clear thatcf ′,q(0) = 0, 0 ≤ q < µf , for all
(f , µf ) ∈ F (a), andcf ′∗,µf

is invertible; thereforeµa′ (f ′∗) = 0.
We have thus established the assertions given by Proposition 4.12 after an

admissible blowing-up (transformation of type (i)). The effect of a transformation
of type (ii) is trivial, so it remains to consider type (iii).
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The effect of an exceptional blowing-up.Let σ be a local blowing-up ofM
with centreC = H0 ∩ H1, whereH0,H1 ∈ E (a), and leta′ denote (the unique
point of) σ−1(a) ∩ H ′1 (whereH ′1 is the strict transform ofH1). We can assume
that Hi ∩ N = V (xi +1), i = 0, 1. As above, there is a neighbourhoodU of a in
N over whichσ can be identified withU ′ = BlC U → U . Thena′ ∈ U ′\V (x1)′,
andσ is given formally ata′ by the substitutionx1 = y1, x2 = y1y2, andx` = y`,
` > 2 (wherey(a′) = 0). Of course,y1, . . . , ym−1 are regular functions ata′, and
y1 = yexc.

Sincez ∼ xm, we havez′ = z ◦ σ ∼ ym. For each (f , µf ) ∈ F (a),

f ′(y) := (f ◦ σ)(y) =
∑

0≤q<µf

cf ′,q(ỹ)yq
m + cf ′,µf

(y)y
µf
m ,

where cf ′,q = cf ,q(y1, y1y2, y3, . . .), 0 ≤ q ≤ µf . Therefore,cf ′∗,d is invertible
and, for all (f , µf ) ∈ F (a), µa′ (cf ′,q) ≥ µf − q, 0 ≤ q < µf . Moreover,
∂d−1f ′∗/∂yd−1

m = (∂d−1f /∂xd−1
m )◦σ ∼ ym. In particular,µF (a′) = 1 andSF (a′) =

{y ∈ V (z′) : µy(cf ′,q) ≥ µf ′ − q , 0 ≤ q < µf ′ , for all (f ′, µf ′ ) = (f ′, µf ) ∈
F (a′)}. (ThusSF (a′) ⊂ σ−1(SF (a)).)

We thus obtain the assertions of 4.12 after an exceptional blowing-up. The
proposition follows on repeated application of transformations of type (i), (ii) or
(iii). �

Proof of Proposition 4.19.This is essentially a repetition of the proof of Propo-
sition 4.12, but using the expansion of eachf in Fr +1(a) with respect to the
regular coordinate system (x1, . . . , xm = z) of Construction 4.18. �

Proof of Proposition 4.24.This is a simple consequence of the transformation
formulas. Considerh in Hr +1(a), h = Ddg as in Construction 4.23. After a
transformation of type (i) (admissible blowing-upσ), the equation

y−d
exch ◦ σ =

(
y−(1−ν(a))d

exc Dd ◦ σ) · (y−ν(a)d
exc g ◦ σ)

gives the factorization ofh′ = y−d
exch ◦ σ as D ′dg′ (i.e., the analogue forh′ of

h = Ddg) for the following reasons: Except foryexc, any yH ′ , H ′ ∈ Er +1(a′), is
a common factor of allg′ = y−ν(a)d

exc g ◦ σ if and only if xH is a common factor
of all g. (H here denotes the element ofEr +1(a) whose strict transform isH ′.)
On the other hand, for anyg such thatµa(g) = µg, g′ is not divisible byyexc.

A similar law for the allowed transformations of type (iii) (exceptional
blowings-up) has been implicitly remarked in the second-last paragraph of the
proof of 4.11. �

6. invX and its key properties

Let M be a manifold andX a closed subspace. Consider an infinitesimal presenta-
tion

(
Np(a),G1(a),E1(a)

)
of codimensionp at a ∈ M . We introduce transforms
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X ′ of X by the three types of morphisms depending on
(
Np(a),G1(a),E1(a)

)
given by (4.3):

(6.1) (i) If σ is an admissible blowing-up, thenX ′ is the strict transform of
X by σ.

(ii), (iii) If σ is either the projection from the product with a line, or an
exceptional blowing-up, thenX ′ denotesσ−1(X).

Consider a (Zariski-semicontinuous) local invariantιX, · of X; for example,
ιX,x = HX,x , the Hilbert-Samuel function ofX at x, or ιX,x = νX,x , the order of
X at x. Recall thatSιX (a) := {x ∈ |M | : ιX,x ≥ ιX,a}. Let Sι(a) denote the germ
of SιX (a) at a; i.e., the germ ata of the ιX -stratum{x : ιX,x = ιX,a}.

Definition 6.2.
(
Np(a),G1(a),E1(a)

)
will be called a (codimensionp) presen-

tation of ιX,· at a with respect to E1(a) if:
(1) SG1(a) = Sι(a).
(2) If σ is an admissible blowing-up (4.3) (i) and a′ ∈ σ−1(a), thenιX′,a′ =

ιX,a if and only if a′ ∈ N ′ (where N′ denotes the strict transform of N= Np(a))

andµa′ (y
−µg
exc g ◦ σ) ≥ µg, for all (g, µg) ∈ G1(a).

(3) Consider any finite sequence of transformations of types (i), (ii) and (iii)
of
(
Np(a),G1(a),E1(a)

)
as allowed bys∗ (Definition 4.10). If

(
Np(a′),G1(a′),

E1(a′)
)

and X′ denote the transforms of
(
Np(a),G1(a),E1(a)

)
and X (respec-

tively) by this sequence, then X′, ιX′,a′ and
(
Np(a′),G1(a′),E1(a′)

)
satisfy the

analogues of (1), (2) above.
We define a (codimensionp) presentation of ιX,· at a as a codimension p

presentation with respect toE1(a) = ∅.

Remarks6.3. (1) Any two presentations ofιX,· at a with respect toE1(a) are
equivalent (with respect tos∗). (2) The equivalence class of a presentation of
ιX,· at a with respect toE1(a) depends only on the local isomorphism class of(
M ,X,E1(a)

)
.

Definition and remark 6.4.We will say ιX,· admits asemicoherent presentation
if M can be covered by regular coordinate chartsU , such that: (1)ιX,· has a
presentation

(
N (x),G1(x),E1(x) = ∅) at eachx ∈ U . (codimN (x) may vary

with x.) (2) Let a ∈ U . Then there is a Zariski-open neighbourhoodV of a
in U , together with a regular submanifoldN of V (of codimensionp, say) and
a collectionG1 = {(g, µg)}, each defined by data inO (U )V (cf. 4.14), such
that, for all x ∈ SιX (a) ∩ V , ιX,x = ιX,a and the germs atx of N and each
g give the presentation

(
N (x),G1(x),E1(x) = ∅). More generally, we define

semicoherenceof presentations
(
N (x),G1(x),E1(x)

)
with respect toE1(x) by

adding the condition that, for allx ∈ SιX (a) ∩V , E1(x) = {H ∈ E1(a) : x ∈ H }.
Suppose thatM can be covered by regular coordinate chartsU such that,

for all a ∈ U , there exists a presentation
(
N (a),G1(a),E1(a) = ∅) of ιX,· at a,

defined by data inO (U )a (as in 4.14). It follows thatιX,· admits a semicoherent
presentation.
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In Chapter III, we will show that the Hilbert-Samuel function admits a semi-
coherent presentation. However, ifX is a hypersurface (i.e.,IX is principal),
this is very simple becauseHX,· can be replaced byνX,· (by Remarks 1.4);
the following proposition will allow us to complete the proof of resolution of
singularities in the hypersurface case.

Proposition 6.5. Suppose that X is a hypersurface. Let a∈ X . If g is a generator
of IX,a (so that g has order d = νX,a), then G1(a) = {(g, d)} determines a
codimension0 presentation ofνX,· at a (such thatµG1(a) = 1). Moreover,νX,·
admits a semicoherent presentation (with codimension0 andµG1(·) = 1 throughout
X ).

Proof . Clearly, SG1(a) = Sν(a). If σ is an admissible local blowing-up ata
((4.3)(i)) anda′ ∈ σ−1(a), theng′ := y−d

excg ◦ σ generatesIX′,a′ . After a trans-
formation of type (ii) or (iii), IX′,a′ is generated byg′ := g ◦ σ. If N0(a) =
germ of M at a and E1(a) = ∅, then

(
N0(a),G1(a),E1(a)

)
is an infinitesimal

presentation of codimension 0 satisfying the hypotheses of Proposition 4.12. The
first assertion follows from 4.12 and 4.13. SinceIX is of finite type, it is clear
that we can choose a codimension 0 semicoherent presentation ofνX,· (with the
function g of 6.4 regular on each coordinate chartU ). �

Suppose thatX is a hypersurface. We can now use the inductive construction
of Sect. 4, beginning with a (semicoherent) presentation ofνX,·, to define invX (a)
and prove Theorem 1.14. Exactly the same arguments will apply to the general
case once we obtain a presentation of the Hilbert-Samuel functionHX,·.

We begin with a general proposition that will be used to establish “semi-
continuity” of the exceptional setsEr (a). (See Sect. 1.) Consider a sequence of
transformations

Mj +1
σj +1−→ Mj −→ · · · −→ M1

σ1−→ M0 = M
Ej +1 Ej E1 E0 = ∅

where, for eachj , σj +1 is a local blowing-up with smooth centreCj such that
Cj andEj simultaneously have only normal crossings, andEj +1 is the collection
of smooth hypersurfaces{σ−1

j +1(Cj ) andH ′, for all H ∈ Ej } (whereH ′ denotes
the strict transform ofH ). If a ∈ Mj , we setE(a) = {H ∈ Ej : a ∈ H }. Let ι
denote a function with values in a partially-ordered set, defined on eachMj , with
the following properties:ι is constant on eachCj , ι is Zariski-semicontinuous
on eachMj , andι is infinitesimally upper-semicontinuous (i.e., ifa ∈ Mj , then
ι(a) ≤ ι

(
σj (a)

)
). If a ∈ Mj , let i denote the smallest indexk such thatι(a) =

ι(ak) (whereak := (σk+1 ◦ · · · ◦ σj )(a)), and setEι(a) = {H ∈ E(a) : H is the
strict transform of some element ofE(ai )}.

Proposition 6.6. Let a ∈ Mj , for some j . Then there is a Zariski-open neigh-
bourhood U of a in Mj such that, for all x∈ Sι(a) ∩ U , Eι(x) = E(x) ∩ Eι(a).

Proof . By induction, we can assume the result inMk , k < j . Then there is a
Zariski-open neighbourhoodU of a such that, ifx ∈ U , then: (1)ι(x) ≤ ι(a); (2)
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ι(xj−1) ≤ ι(aj−1); (3) E(x) ⊂ E(a); (4) Eι(xj−1) = E(xj−1) ∩ Eι(aj−1) whenever
xj−1 ∈ Sι(aj−1); (5) xk /∈ Ck if ak /∈ Ck , for all k < j . We consider 3 cases:

(a) ι(a) = ι(aj−1). Sinceι(a) = ι(x) ≤ ι(xj−1) ≤ ι(aj−1), all terms are equal.
Thus Eι(a) = E(a) ∩ {H ′ : H ∈ Eι(aj−1)} and Eι(x) = E(x) ∩ {H ′ : H ∈
Eι(xj−1)}. By (4), Eι(x) = E(x) ∩ Eι(a).

(b) ι(a) < ι(aj−1) and ι(x) < ι(xj−1). Then, by definition,Eι(a) = E(a) and
Eι(x) = E(x), so the result follows trivially from (3).

(c) ι(a) < ι(aj−1) but ι(x) = ι(xj−1). Thenι(xj−1) < ι(aj−1), so xj−1 6∈ Cj−1

andσj induces an isomorphism between neighbourhoods ofx and xj−1 (taking
E(x) to E(xj−1) and Eι(x) to Eι(xj−1)). We haveEι(a) = E(a), so we have to
prove Eι(x) = E(x): Let i be the leastk such thatι(xk) = ι(x). Then i < j and
ι(x) = ι(xj−1) = · · · = ι(xi ). Thus, for allk = i , . . . , j −1, ι(xk) < ι(ak). It follows
from (5) thatxk 6∈ Ck and E(x) ∼= E(xk), Eι(x) ∼= Eι(xk). ThenEι(xi ) = E(xi ),
so Eι(x) = E(x). �

Definition of inv X. We consider a sequence of transformations

(6.7)
−→ Mj +1

σj +1−→ Mj −→ · · · −→ M1
σ1−→ M0 = M

Xj +1 Xj X1 X0 = X
Ej +1 Ej E1 E0 = E

where, for eachj ,
(1) σj +1: Mj +1 = BlCj Wj → Wj ↪→ Mj is a local blowing-up with smooth

centreCj ↪→ Wj , andCj ,Ej simultaneously have only normal crossings.
(2) Xj +1 is the strict transformX ′j of Xj by σj +1.

(3) Ej +1 = {H ′ : H ∈ Ej }∪{σ−1
j +1(Cj )}, whereH ′ denotes the strict transform

of H . (By (1), Ej +1 has only normal crossings.)
If a ∈ Mj , set E(a) = {H ∈ Ej : a ∈ H }. Write σij = σi +1 ◦ · · · ◦ σj ,

i = 0, . . . , j − 1, andσjj = identity. If a ∈ Mj , setai = σij (a), i = 0, . . . , j .
For all a ∈ Mj , j ≥ 0, set inv1/2(a) = HXj ,a (or inv1/2(a) = ν1(a), where

ν1(a) := νXj ,a, if X is a hypersurface). Then inv1/2 is Zariski-semicontinuous on
eachMj .

Assume now that each centre of blowing-upCj is 1/2-admissible; i.e., inv1/2

is (locally) constant onCj . If X is a hypersurface, then inv1/2 is infinitesimally
upper-semicontinuous (i.e., inv1/2(a′) ≤ inv1/2(a) for all a ∈ Mj and a′ ∈
σ−1

j +1(a), j ≥ 0) by 5.1. In general, inv1/2 is infinitesimally upper-semicontinuous
by Theorem 7.20.

Definitions 6.8. Suppose a∈ Mj . Let i be the smallest k such thatinv1/2(a) =
inv1/2(ak), and set E1(a) = {H ∈ E(a): H is the strict transform of some el-
ement of E(ai )}. Put E1(a) = E(a)\E1(a). Set s1(a) = #E1(a), and inv1(a) =(
inv1/2(a), s1(a)

)
.

Clearly, inv1(a) is a local invariant of the triple
(
Mj ,Xj ,E1(a)

)
. It follows

from Proposition 6.6 that inv1 is Zariski-semicontinuous onMj , for all j . It is
also clear that inv1 is infinitesimally upper-semicontinuous.
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We now assume thatX is a hypersurface, so that we can use Proposition 6.5
above. But all of the following arguments hold in general, once we construct a
semicoherent presentation of the Hilbert-Samuel function.

Proposition 6.9. For all a ∈ Mj , j ≥ 0, there is a (codimension zero) presen-
tation

(
N0(a),G1(a),E1(a)

)
of ν1 = νXj ,· at a with respect toE1(a) satisfying

the hypotheses of 4.12. Such presentations can be chosen for all a∈ Mj in a
semicoherent way.

Proof . Let a ∈ Mj , j ≥ 0. Let i denote the smallest indexk such that
ν1(a) = ν1(ak). Then E1(ai ) = ∅. By Proposition 6.5, there is a codimension
0 presentation

(
N0(ai ),G1(ai ),E1(ai ) = ∅) of ν1 at ai , whereµG1(ai ) = 1. In-

ductively, for eachk = i , . . . , j − 1, σk+1 induces a transformation of type (i),(
N0(ak),G1(ak),E1(ak)

) 7→ (
N0(ak+1),G1(ak+1),E1(ak+1)

)
. Then

(
N0(a),G1(a),

E1(a)
)

is a presentation ofν1 at a with respect toE1(a), which satisfies the hy-
pothesis of Proposition 4.12, as in Example 4.16. The second assertion follows
from Propositions 6.5 and 6.6, and Remarks 4.14. �

Let a ∈ Mj , j ≥ 0. Let
(
N0(a),G1(a),E1(a)

)
be as in Proposition 6.9, and

define
F1(a) := G1(a) ∪ (E1(a), 1

)
,

where
(
E1(a), 1) := {(`H , 1) : H ∈ E1(a)} and `H ∈ OM ,a generatesIH ,a.

Clearly,
(
N0(a),F1(a),E1(a)

)
satisfies the hypotheses of 4.12 (as in 4.16),

and its equivalence class (always with respect tos∗) depends only onE1(a)
and that of

(
N0(a),G1(a),E1(a)

)
; thus only on the local isomorphism class of(

M ,X,E,E1(a)
)
. It follows from 6.6 and 6.9 that

(
N0(a),F1(a),E1(a)

)
can be

chosen for alla ∈ Mj in a semicoherent way.
Moreover,

(
N0(a),F1(a),E1(a)

)
is a (codimension0) presentation ofinv1 at

a with respect toE1(a) in the sense that:

(6.10) (1)SF1(a) = Sinv1(a).
(2) If σ is a local blowing-up ata where centreC is 1-admissible(i.e.,

inv1 is constant onC) and a′ ∈ σ−1(a), then inv1(a′) = inv1(a) if and only if
µa′ (y

−µf
exc f ◦ σ) ≥ µf , for all (f , µf ) ∈ F1(a).

(3) The analogues of (1), (2) hold after any sequence of transformations of
type (i) (1-admissible local blowings-up).

Remark 6.11.It is possible to define inv1 after transformations of types (ii) and
(iii) as well, so that “presentation of inv1” can be defined in complete analogy
with Definition 6.2. But we do not need this; transformations of types (ii) and
(iii) are used only to establish invariance ofνr (a), r > 1, by test blowings-up
(Propositions 4.8 and 4.11).

In summary: Given a sequence of local blowings-up (6.7) with centres which
are 1/2-admissible, we takeE1(a) = E(a)\E1(a), a ∈ Mj , and introduce a (semi-
coherent) presentation

(
N0(a),G1(a),E1(a)

)
of inv1/2 at a with respect toE1(a),

of codimension 0 (in the hypersurface case). Setting inv1 = (inv1/2, s1), where
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s1(a) = #E1(a), and adjoining
(
E1(a), 1

)
to G1(a), we obtain a (semicoherent)

presentation
(
N0(a),F1(a),E1(a)

)
of inv1 at a with respect toE1(a).

By 4.18, 4.19 (and 4.20), there is an equivalent (semicoherent) codimension
1 presentation

(
N1(a),H1(a),E1(a)

)
of inv1 at a with respect toE1(a).

Definitions and remarks 6.12. We defineµ2(a) = µH1(a) as in (4.21). It follows
from Proposition 4.8 thatµ2(a) is a local invariant of

(
M ,X,E,E1(a)

)
; 1 ≤

µ2(a) ≤ ∞ andµ2(a) = ∞ if and only if H1(a) = 0. If µ2(a) <∞, then (as in
(4.22)) we set

µ2,H (a) = µH1(a),H , H ∈ E1(a) ,

ν2(a) = µ2(a)−
∑

H∈E1(a)

µ2,H (a) .

Thusν2(a) ≥ 0. Also setν2(a) = ∞ if µ2(a) = ∞. Put inv11
2
(a) =

(
inv1(a); ν2(a)

)
.

It follows from 4.11 that inv11
2
(a) is a local invariant of

(
M ,X,E,E1(a)

)
.

Proposition 6.13. inv11
2

is Zariski-semicontinuous on each Mj . If Cj is 11
2-

admissible (i.e.,inv11
2

is (locally) constant on Cj ), then inv11
2
(a′) ≤ inv11

2
(a)

for all a ′ ∈ σ−1(a).

Remark 6.14.In the case of analytic spaces overk, wherek is not algebraically
closed, the argument following actually shows that inv11

2
(or, more generally,

invr + 1
2
, r ≥ 1, and thus invX ) is “Zariski-semicontinuous” in the weaker sense

of the paragraph following Definition 3.11. This suffices for all of our results,
except for canonical desingularization in the noncompact case. In fact, though,
Zariski-semicontinuity (in the sense of Definition 3.11) follows because invr + 1

2
is invariant under any finite field extension, and a germ of an analytic function
which vanishes onSinv

r + 1
2

(a) at some point will vanish also onSinv
r + 1

2
(a) when

defined over a finite extension ofk.

Proof of Proposition 6.13.This follows from Constructions 4.18 and 4.23, and
from semicoherence of

(
N0(a),F1(a),E1(a)

)
. Recall thatµh = d for all (h, µh) ∈

H1(a) (in the notation of 4.23). OnSinv1(a), ν2(x) = 1
d minH1(a) µx(D−d

2 h). The
first assertion follows, therefore, from semicontinuity of multiplicity. The second
assertion follows from Lemma 5.1 because, ifCj is 11

2-admissible, inv1(a′) =
inv1(a) wherea′ ∈ σ−1

j +1(a), andg denotes an element of minimal order among
the h/Dd

2 , theng transforms byσj +1 at a′ according to the law in Lemma 5.1
(cf. proof of Proposition 4.24). �

If ν2(a) = 0 or∞, set invX (a) = inv11
2
(a). Suppose 0< ν2(a) <∞. Construc-

tion 4.23 provides a (codimension 1) infinitesimal presentation
(
N1(a),G2(a),

E1(a)
)

such thatµG2(a) = 1, whose equivalence class (with respect tos∗) depends
only on that of

(
N0(a),F1(a),E1(a)

)
(by 4.24). Moreover,

(
N1(a),G2(a),E1(a)

)
is a presentation of inv11

2
at a with respect toE1(a), in analogy with (6.10). Using
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Remark 4.25, we see that inv11
2

admits a semicoherent (codimension 1) presen-

tation on eachMj . (If a ∈ Mj and ν2(a) = 0 or ∞, then Sinv
1 1

2

(a) = Sinv1(a)

and
(
N1(a),H1(a),E1(a)

)
, as defined above, is a codimension 1 presentation

of inv11
2

at a with respect toE1(a).)

Now let us assume that the centresCj of theσj +1 in (6.7) are all 112-admissible.

Definitions 6.15. Suppose a∈ Mj and0 < ν2(a) <∞. Let i denote the smallest
k such thatinv11

2
(a) = inv11

2
(ak), and set E2(a) = {H ∈ E1(a) : H is the

strict transform of some element ofE1(ai )}. Put E2(a) = E1(a)\E2(a). We set
s2(a) = #E2(a), and inv2(a) =

(
inv11

2
(a), s2(a)

)
. (If ν2(a) = 0 or ∞, we set

inv2(a) = invX (a).)

Clearly, inv2(a) is a local invariant of
(
Mj ,Xj ,E(a),E1(a),E2(a)

)
. It follows

from Proposition 6.6 that inv2 is Zariski-semicontinuous onMj , for all j . It is
also clear that inv2 is infinitesimally upper-semicontinuous.

When 0< ν2(a) < ∞, we continue inductively: Leta ∈ Mj , j = 0, 1, . . .,
and let

(
N1(a),G2(a),E1(a)

)
be a codimension 1 presentation of inv11

2
at a with

respect toE1(a). Then
(
N1(a),G2(a),E2(a)

)
is a codimension 1 presentation

of inv11
2

at a with respect toE2(a) that satisfies the hypothesis of Proposition

4.12 (as in 4.16; cf. proof of 6.9). DefineF2(a) := G2(a) ∪ (E2(a), 1
)
. Clearly,(

N1(a),F2(a),E2(a)
)

satisfies the hypotheses of 4.12, and its equivalence class
depends only on the local isomorphism class of

(
Mj ,Xj ,E(a),E1(a),E2(a)

)
.

Moreover,
(
N1(a),F2(a),E2(a)

)
is a codimension 1 presentation of inv2 at a

with respect toE2(a). Then inv2 admits a semicoherent presentation on eachMj

(using
(
N1(·),F2(·),E2(·)) on the set where 0< ν2(·) <∞).

We thus continue inductively, first to defineνr +1(a), and thensr +1(a) after
assuming that all centresCj in (6.7) are (r + 1

2)-admissible. In general, of course,
the semicoherent presentation that we construct for invr + 1

2
or invr +1 will have

codimension that varies according to the stratum. Eventually, we reacht ≤ n =
dimaMj such that 0< νr (a) < ∞, r ≤ t , and νt+1(a) = 0 or ∞. Then we
define invX (a) =

(
invt (a); νt+1(a)

)
. In this case, alreadySinvt (a) = SinvX (a). Our

construction provides a codimensiont presentation
(
Nt (a),Ht (a),Et (a)

)
of invt

(or of invX ) at a with respect toEt (a).

Remark 6.16. Suppose that inv1/2 = ν1 admits a codimensionp presen-
tation

(
Np(a),G1(a),E1(a)

)
at a ∈ Mj , where p ≥ 1. Then invp(a) =

(ν1(a), s1(a); 1, 0; . . .; 1, 0) (i.e., (1, 0) is listed p − 1 times). Moreover, if(
N1(a),C1(a),E1(a)

)
is a codimension 1 presentation of inv1/2 at a, then our

construction provides an (equivalent) codimensionp presentation
(
N ′p(a),G ′

1 (a),
E1(a)

)
, whereN ′p(a) ⊂ N1(a).

Proof of Theorem 1.14 on the key properties of invX. We have already seen that
the semicontinuity property (1) of Theorem 1.14 follows from our construction.
To prove (2): The stabilization property of inv1/2 = ν1 is a consequence of
infinitesimal semicontinuity becauseν1(a) ∈ N. The assertion for invX follows
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from infinitesimal semicontinuity of invX because, althoughνr +1(a), for eachr >
0, is perhaps merely rational, our construction above shows thater !νr +1(a) ∈ N,
where e1 = ν1(a) and er +1 = max{er !, er !νr +1(a)}, r > 0. It remains to get
properties (3) and (4).

Case(a). νt+1(a) = ∞. Then (3) and (4) are both trivial becauseSinvt (a) =
Nt (a) and, if σ is the local blowing-up with centreN = Nt (a), then the strict
transformN ′ = ∅, so that invt (a′) < invt (a), for all a′ ∈ σ−1(a) (cf. 6.2(2)).

Case(b). νt+1(a) = 0. We use the notation of (4.22) and Construction 4.23.
We haveh = Dd

t+1, for some (h, µh = d) ∈ Ht (a), and

Sinvt (a) = {x = (x1, . . . , xn−t ) ∈ Nt (a) : µx(Dt+1) ≥ 1} .

(Recall thatDt+1(x) is a monomialxΩ1
1 · · · xΩn−t

n−t with rational exponents; if
Ω` /= 0, thenx` = xH for someH ∈ Et (a), andΩ` = µt+1,H (a). Thusµx(Dt+1)
makes sense as a rational number.) Therefore,Sinvt (a) is a union of smooth
components

⋃
I ZI , whereZI = {x ∈ Nt (a) : x` = 0, ` ∈ I } and the union is

over the minimal subsetsI of {1, . . . , n−t} such that
∑

`∈I Ω` ≥ 1; equivalently,
over the subsetsI such that

0 ≤
∑
m∈I

Ωm − 1 < Ω` , for all ` ∈ I .

In particular, (3) holds.
We prove (4) usingµX (a) = µt+1(a). Consider a local blowing-upσ: W ′ →

W ↪→ Mj with centreZI , for someI as above. (W is a neighbourhood ofa = 0
in which (x1, . . . , xn−1) extend to regular coordinates forN = Nt (a).) Suppose
a′ ∈ σ−1(a) and invt (a′) = invt (a). Then a′ ∈ N ′, where N ′ is the strict
transform ofN ; N ′ is a union of regular coordinate charts

⋃
`∈I U ′` such that

σ | U ′` is given byx` = y`, xm = y`ym if m ∈ I \{`}, and xm = ym if m 6∈ I .
Considerh = Dd

t+1 ∈ Ht (a). Supposea′ ∈ U ′` . Then h′ ∈ Ht (a′), where

h′ := y−d
` (Dd

t+1) ◦ σ = (y
Ω′

1
1 · · · yΩ

′
n−t

n−t )d, and

Ω′m = Ωm , m /= ` , Ω′` =
∑
m∈I

Ωm − 1 < Ω` .

Therefore, 1≤ µt+1(a′) ≤
n−t∑
m=1

Ω′m <
n−t∑
m=1

Ωm = µt+1(a), as required. �

Remark 6.17.Supposea ∈ Mj and invX (a) =
(
invt (a); νt+1(a)

)
, whereνt+1(a) =

0 or ∞ as above. Consider the extended invariant inve
X (a) =

(
invX (a); J (a)

)
,

with J (a) defined as in Remarks 1.16. Note that
⋃

r≤t Er (a) ⊂ J (a). SetJt (a) :=
J (a)\⋃r≤t Er (a). Let Se

X (a) := Sinve
X

(a). If νt+1(a) = ∞, then codimSe
X (a) = t ,

and if νt+1(a) = 0, then codimSe
X = t + #Jt (a).
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Chapter III. Presentation of the Hilbert-Samuel function;
desingularization in the general case

In Sect. 9, we construct a semicoherent presentation of the Hilbert-Samuel
function (Definitions 6.2, 6.4), so that resolution of singularities follows as in
Ch.II (cf. Remarks 9.15). Our presentation at a point is formally equivalent to
a “formal presentation” in codimension zero. The standard basis of the ideal
ÎX,a ⊂ ÔM ,a

∼= k[[x]] with respect to coordinatesx = (x1, . . . , xn) provides
a formal presentation ofHX,· at a (cf. [BM4, Theorem 7.3]), but does not, in
general, correspond to a regular presentation (i.e., a presentation in the sense of
6.2, which is given by regular functions as in 4.1; cf. Remark 1.19). Our regu-
lar presentation is determined by the coefficients (of an expansion with respect
to “essential variables”) of a system of generators of̂IX,a satisfying properties
which isolate the essential features of a standard basis that are preserved by
transformations of types (i), (ii) and (iii) ((4.4) above). Sect. 7 is purely formal:
we introduce these properties and prove they determine a presentation of the
Hilbert-Samuel function associated to an ideal in a ring of formal power series.
Semicoherence of the regular presentation of Sect. 9 depends on showing that
the formal properties are open (in the Zariski topology) on the Hilbert-Samuel
stratumSH (a) = {x : HX,x = HX,a}. A combinatorial stabilization theorem for
the diagram of initial exponents (Sect. 8) plays an important part.

7. The formal presentation

Let k[[X]] = k[[X1, . . . ,Xn]]. If G = (G1, . . . ,Gq), where eachGj ∈ k[[X]], we
write (G) or (G1, . . . ,Gq) for the ideal generated by theGj . Let N ∈ D (n) (cf.
3.18 ff.), and letHN : N→ N denote the functionHN (k) = #{α ∈ Nn\N : |α| ≤
k}.

(7.1) Structure of the diagram.Let αi , i = 1, . . . , s, be the vertices ofN
in ascending order. (We totally orderNn using the lexicographic ordering of
(|α|, α1, . . . , αn), α ∈ Nn.) For eachk ∈ N, sets(k) = max{i : |αi | ≤ k} and
putN(k) =

⋃s(k)
i =1 (αi +Nn). We group the verticesαi into blocks of given order

|αi |; say thatk1 < k2 < · · · < kp are the orders of the blocks. Lets̀ = s(k`),
` = 1, . . . , p. Thens1 < s2 < · · · < sp = s andα1, . . . , αs̀ are the vertices ofN
with |αi | ≤ k`, for each` = 1, . . . , p.

By a possible permutation of the variables, we can assume that the last
r indeterminates (Xn−r +1, . . . ,Xn) are precisely the “essential variables” of the

monomialsXαi
; i.e., the variables occurring to positive power in someXαi

.
(“Essential variables” is used here in a weaker sense than in [BM4, Sect. 6].)
ThusN = Nn−r × N∗, whereN∗ ∈ D (r ) and r is as small as possible for
any permutation of the variables. (r is not determined by the Hilbert-Samuel
function HN ; cf. 9.15(1).) Obviously, eachαi ∈ {0} ×N∗. Write X = (W,Z) =
(W1, . . . ,Wn−r ,Z1, . . . ,Zr ). We can assume in the same way that we have 1≤



262 E. Bierstone, P.D. Milman

r1 ≤ r2 ≤ · · · ≤ rp = r so that, for each̀ = 1, . . . , p, the lastr` variables
Z` = (Zr−r`+1, . . . ,Zr ) are the essential variables of the monomialsXαi , 1 ≤
i ≤ s̀ (corresponding to the first̀ blocks of vertices). It follows that, for all
j = 1, . . . , r , there existsi (j ), 1≤ i (j ) ≤ s, such that ifj > r − r`, theni (j ) ≤ s̀
andαi (j ) = β j +

(
0, (j )

) ∈ Nn−r ×Nr , whereβ j ∈ {0}×Nr` ⊂ Nn−r` ×Nr` (and
(j ) ∈ Nr is the multiindex with 1 in thej ’th place and 0 elsewhere).

EachN(k`) has the formN(k`) = Nn−r` × N`, whereN` = N(k`)∗ ⊂ Nr` ,
and each�i = Nn−r` × �`

i , where�`
i ⊂ Nr` . (We writeN =

⋃
(αi +�i ) as in

Sect. 3.)

The formal properties. Let I denote an ideal ink[[X]], and let fi (X) =
fi (W,Z) ∈ I , i = 1, . . . , s. Let N ∈ D (n). Fix K ∈ N, K ≥ max|αi | − 1.
We consider the following five properties (using the notation of (7.1)):

(7.2) (1)µ(fi ) = |αi |, i = 1, . . . , s. (µ(f ) denotes the order off ∈ k[[X]].)
(2) Division property of the initial forms(infi ) (X) =

∑
|α|=di

Dαfi (0)Xα/α!,

wheredi = |αi |. For eachk ∈ N: (2k) If f (X) is a homogeneous polynomial, say
of degreed, then there exist unique homogeneous polynomialsQi (f ) of degrees
d − di , i = 0, . . . , s(k) (whered0 = 0 andQi (f ) = 0 if d < di ) such that

f =
s(k)∑
i =1

Qi (f ) · in fi + Q0(f ) ,

suppQi (f ) ⊂ �i , i = 1, . . . , s(k), and suppQ0(f ) ∩N(k) = ∅. Of course, (2k) is
equivalent to “(2k,d) for all d ∈ N”, where (2k,d) is the condition that

Xβ(in fi )(X), β ∈ �i , |β| = d − di , i = 1, . . . , s(k),
Xγ , γ 6∈ N(k), |γ| = d,

span thek-vector space (X)d/(X)d+1 of homogeneous polynomials of degreed.
(3) For all f ∈ I , there existqi (f ) ∈ k[[X]], i = 1, . . . , s, such thatf =

s∑
i =1

qi (f ) · fi and suppqi (f ) ⊂ �i , for eachi .

(4) For all j = 1, . . . , r , let gj (X) = Dβj fi (j )(X). Then for each̀ = 1, . . . , p:
(4`) gj (X) ∈ (Z`) if r − r` < j ≤ r , and det(∂g`/∂Z`)(0) /= 0, where∂g`/∂Z`

denotes the Jacobian matrix ofg` := (gr−r`+1, . . . , gr ) with respect toZ` =
(Zr−r`+1, . . . ,Zr ), and (Z`) denotes the ideal generated byZr−r`+1, . . . ,Zr .

(5) For each̀ = 1, . . . , p: (5`) If i > s̀ , thenDβ

Z`
fi ∈ (Z`), for all β ∈ N` ⊂

Nr` , |β| ≤ K . (Dβ

Z`
denotes the formal partial derivative of orderβ with respect

ot Z`.)

We begin with some elementary remarks on properties (1)–(3) of (7.2) and
their relationship with the Hilbert-Samuel function ofk[[X]]/I . Let fi (X) ∈ I ,
i = 1, . . . , s. The following can be proved by Euclidean division (cf. Theorem
3.17).
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Lemma 7.3. (Formal division algorithm). Let k∈ N. Assume properties (1) and
(2k). Then for all f ∈ k[[X]] , there are unique qi (f ) ∈ k[[X]] , i = 0, . . . , s(k),
such that

f =
s(k)∑
i =1

qi (f )fi + q0(f ) ,

suppqi (f ) ⊂ �i , i = 1, . . . , s(k), and suppq0(f ) ∩ N(k) = ∅. Moreover, if f ∈
(X)d, then each qi (f ) ∈ (X)d−di (where(X)` means k[[X]] if ` ≤ 0).

We recall that ifJ is an ideal ink[[X]], then the Hilbert-Samuel function of
k[[X]]/J is given byHk[[X]]/J (`) = dimkk[[X]]/(J + (X)`+1).

Corollary 7.4. Let k ∈ N; assume (1) and(2k). Then Hk[[X]]/(f1,...,fs(k)) ≤ HN(k) .

Lemma 7.5. Assume (1), (2). Then property (3) is equivalent to each of the
following:

(a) I ⊕ k[[X]]N = k[[X]] , where k[[X]]N := {f ∈ k[[X]] : suppf ∩N = ∅}.
(b) Hk[[X]]/I = HN .

Proof. By 7.3, (3)⇔ (a), and (b) is equivalent to the conditionI ⊕ k[[X]]N =
k[[X]] mod(X)`+1, for all `. Therefore, (a)⇒ (b). To see (b)⇒ (3), let f ∈ I
and writef =

∑s
i =1 qi (f )fi + q0(f ) according to 7.3; thenq0(f ) ∈ (X)`+1, for all

`, so q0(f ) = 0. �

Remark 7.6. Assume properties (1)–(3) of (7.2). Then the initial forms infi
satisfy (1), (2) automatically. SinceHk[[X]]/I = Hk[[X]]/in I , it follows from (3) and
Lemma 7.5 that the infi satisfy property (3) with respect to inI ; in particular,
the infi generate inI . (in I denotes the ideal generated by inf , for all f ∈ I .)
Moreover, if properties (4), (5) are satisfied, then the infi satisfy these properties
as well.

For eachd ∈ N, let j d
0 denote the canonical projectionk[[X]] → k[[X]]/(X)d+1.

Lemma 7.7. Assume (1). Let k∈ N. Then property(2k) is equivalent to each of
the following conditions:

Xβ(in fi )(X) , β ∈ �i , |β| ≤ d − di , i = 1, . . . , s(k) ,(a)

Xγ , γ 6∈ N(k), |γ| ≤ d ,

form a basis of the vector space k[[X]]/(X)d+1, for each d∈ N.

Xβ j d−|β|
0 fi , β ∈ �i , |β| ≤ d − di , i = 1, . . . , s(k) ,(b)

Xγ , γ 6∈ N(k), |γ| ≤ d ,

form a basis of k[[X]]/(X)d+1, for each d∈ N.
Moreover, suppose thatN(k) = Nn−q × N•, whereN• ⊂ Nq. (Thus, for

each i = 1, . . . , s(k), �i = Nn−q × �•i , where�•i ⊂ Nq.) Write X = (U ,V ) =
(U1, . . .,Un−q, V1, . . . ,Vq). Then each of the conditions above is equivalent to:
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V β(in fi )(0,V ) , β ∈ �•i , |β| ≤ d − di , i = 1, . . . , s(k),(c)

V γ , γ 6∈ N•, |γ| ≤ d,

form a basis of k[[V ]]/(V )d+1, for each d∈ N.

Proof . Obviously, (2k) ⇔ (a). Consider the square matrices with entries ink
whose columns are the elements listed in (a) or (b) written in components with
respect to the standard monomial basis ofk[[X]]/(X)d+1. These matrices differ
by a factor which is a triangular matrix with 1’s on the diagonal. Therefore, (a)
⇔ (b). In each condition of the lemma, “form a basis of” is equivalent to “span”,
by dimension considerations.

(a)⇒ (c): Let f (V ) be a polynomial inV of degree≤ d. By (a),

f (V ) =
s(k)∑
i =1

qi (U ,V )(in fi )(U ,V ) + q0(U ,V ) ,

where eachqi is a polynomial of degree≤ d−di , suppqi ⊂ �i , i = 1, . . . , s(k),
and suppq0 ∩N(k) = ∅. SetU = 0 to obtain (c).

(c)⇒ (a): Letf (U ,V ) be a polynomial of degree≤ d. We argue by induction
on the degreee of f with respect toV . Write f (U ,V ) =

∑
α∈N q
|α|≤e

cα(U )Vα.

Expressing eachVα in terms of the basis ofk[[V ]]/(V )|α|+1 given by (c), we
get

f (U ,V ) =
s(k)∑
i =1

ci (U ,V )(in fi )(0,V ) + c(U ,V ) ,

where eachci (U ,V ) = ci (X) is a linear combination of monomialsXβ , |β| ≤
d − di , β ∈ �i , andc(U ,V ) is a linear combination ofXγ , |γ| ≤ d, γ 6∈ N(k).
Write

f (U ,V ) =
s(k)∑
i =1

ci (U ,V )(in fi )(U ,V ) + c(U ,V )

+
s(k)∑
i =1

ci (U ,V )
(
(in fi )(0,V )− (in fi )(U ,V )

)
;

the result follows by induction since the last sum has degree< e in V . �

Remark 7.8. Assume (1) and (2). It follows by dimension considerations from
Lemma 7.7 that none of the (infi )(0,V ) vanish. (Therefore each has orderdi .)

The Hilbert-Samuel function and the equimultiple locus.Let I denote an ideal
in k[[X]] = k[[X1, . . . ,Xn]]. In this subsection, we will prove that iffi (X) ∈ I ,
i = 1, . . . , s, satisfy properties (1)–(5) of (7.2), then (formally) the equimultiple
locus of thefi coincides with the Hilbert-Samuel stratum ofk[[X]]/I .

Suppose thatfi (X) ∈ k[[X]], i = 1, . . . , s. Setdi = µ(fi ), for eachi .
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Definition 7.9. For each k∈ N, let I k
S(f )

⊂ k[[X]] denote the ideal generated by

all formal derivatives Dαfi , |α| < min(di , k + 1), i = 1, . . . , s.

Obviously, I k
S(f )

⊂ I k+1
S(f )

for all k, with equality whenk + 1≥ max di . In the

latter case, we will say thatI k
S(f )

is the ideal of the “formal equimultiple locus”
of the fi .

Write A = k[[X]] and let Y = (Y1, . . . ,Yn) be indeterminates. Letk ∈ N.
Every f ∈ A induces an element (j k

X f )(Y) ∈ A[[Y ]]/(Y)k+1; namely,

(j k
X f )(Y) := f (X + Y) mod (Y)k+1 =

∑
|α|≤k

Dαf (X)
α!

Yα mod (Y)k+1.

Let J kI denote the ideal inA[[Y ]]/(Y)k+1 generated by (j k
X f )(Y), for all f ∈ I . If

I is generated byfi (X), i = 1, . . . , s, then, as anA-submodule ofA[[Y ]]/(Y)k+1,
J kI is clearly generated byYβ(j k

X fi )(Y), i = 1, . . . , s, |β| ≤ k.

Definition 7.10. For each k∈ N, let I k
S ⊂ k[[X]] be the ideal

∑
j≤k

◦
I
j

S, where
◦
I
k

S

denotes the local flattener of the A-module F= (A[[Y ]]/(Y)k+1)/J kI .

The chain of inclusionsI k
S ⊂ I k+1

S stabilizes, of course, sinceA is Noetherian.
The “local flattener” ofF means the smallest idealH in A such thatF⊗AA/H

is a flat (A/H )-module. We will never need this idea, so we avoid using it

(or showing thatH exists!) by giving an alternative explicit definition of
◦
I
k

S

(Definition 7.13 below).

Remark 7.11. Suppose thatR is a ring (commutative with 1) and thatJ is
a submodule of a free moduleRq. Let E = Rq/J , and let Rq → E be the

canonical projection. Consider any exact sequenceRp B−→Rq −→E−→ 0; i.e.,
the columnsb1, . . . , bp of B (regarded as aq×p matrix with entries inR) form a
set of generators ofJ . Let r ∈ N. Then the idealH in R generated by the minors
of B of order r is independent of the choice ofp and B: Suppose thatB′ is a
q × p′ matrix whose columnsb′1, . . . , b

′
p′ generateJ . Then eachbi =

∑
j aij b′j ,

where theaij ∈ R. HenceH ⊂ H ′. Likewise,H ′ ⊂ H .

Let k ∈ N. We identifyA[[Y ]]/(Y)k+1 with Aq, whereq = #{α ∈ Nn : |α| ≤
k}, by means of the standard monomial basis{Yα : |α| ≤ k}. Suppose that
fi (X), i = 1, . . . , s, form a set of generators ofI ; di = µ(fi ) for eachi . Consider
the presentation

(7.12) Ap B−→ Aq −→ F −→ 0

of the A-moduleF = (A[[Y ]]/(Y)k+1)/J kI , whereB is the matrix with entries
in A whose columns (as elements ofA[[Y ]]/(Y)k+1) are

Yβ(j k
X fi )(Y) =

∑
|α|≤k

Dα−β fi (X)
(α− β)!

Yα mod(Y)k+1 , i = 1, . . . , s, |β| ≤ k.
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(Dα−β = 0 unlessα ≥ β in the usual partial ordering ofNn). Thus the columns
of B are indexed by (i , β), i = 1, . . . , s, |β| ≤ k, and the rows are indexed byα,
|α| ≤ k.

By evaluationX = 0, B induceskp B(0)−→kq. (In B(0), the columnYβ(j k
0 fi )(Y)

is zero unless|β| ≤ k − di .) Setrk = rankB(0). Clearly,HA/I (k) = q − rk .

Definition 7.13. For each k∈ N, we can define
◦
I
k

S as the ideal in A generated
by the minors of B of order rk + 1.

By Remark 7.11, this definition is independent of the presentation (7.12); in
particular, independent of the choice of generators ofI . The idealI k

S defines the
“formal Hilbert-Samuel stratum” ofI whenk is large enough.

Theorem 7.14. (cf. [BM4, Theorem 5.3.1]). Let I be an ideal in k[[X]] =
k[[X1, . . . ,Xn]] , and letN ∈ D (n). Let fi (X) = fi (W,Z) ∈ I , i = 1, . . . , s, be el-
ements satisfying properties (1)–(5) of (7.2), where K≥ max di − 1 (di = µ(fi )).
If k ≥ max di − 1, then IkS(f )

= I k
S . (The inclusion IkS(f )

⊂ I k
S does not require

property (3).)

Proof . Let B denote the matrix above: The columns ofB are theYβ j k
X fj (Y),

j = 1, . . . , s, |β| ≤ k. (More precisely, the components of the column vectors
are the coefficients of the monomialsYα in these elements.)B has column
index (j , β) and row indexα ∈ Nn, |α| ≤ k. Consider the minor ofB of order
rk = rankB(0) determined by the columnsYβ j k

X fj (Y), whereβ ∈ �j , |β| ≤ k−dj ,
and the rows indexed byα ∈ N, |α| ≤ k (cf. Lemma 7.7). (Only columns such
that dj ≤ k are involved.)

We claim that this minor is a unit (i.e., nonzero whenX = 0). To see this,
consider the following block matrix with entries ink[[X]]. (The columns are
indicated along the top, and the rows are labelled at the left.)

Yβ j k
X fj (Y),

β ∈ �j , |β| ≤ k − dj

Yγ ,

γ /∈ N, |γ| ≤ k

α ∈ N,
|α| ≤ k

C 0

α /∈ N,
|α| ≤ k

identity

The minor we are interested in is the determinant of the upper left blockC . The
entire matrix here is invertible by properties (1), (2) of (7.2). The upper right
block is zero, and the lower right is the identity (provided that the corresponding
rows and columns are ordered lexicographically with respect toα or γ). This
establishes the claim.
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Lemma 7.15. Suppose that k< di , where1 ≤ i ≤ s. Then, for allγ 6∈ N,
|γ| ≤ k,

Dγ fi ∈
◦
I
k

S + (Dαfi : α ∈ N, |α| ≤ k) .

Proof . Consider the minorϕ of B of order rk + 1 determined by adjoining to
the submatrixC above, the columnj k

X fi (Y) and the row indexed byγ (where

γ 6∈ N, |γ| ≤ k). Then ϕ ∈ ◦
I
k

S. But, expandingϕ by cofactors along the
column determined byj k

X fi (Y), we see thatϕ = Dγ fi× unit modulo the ideal
(Dαfi : α ∈ N, |α| ≤ k). �

Remark 7.16.For each̀ = 1, . . . , p, the ideal (Z`) ⊂ I k`−1
S(f )

, by property (4) of
(7.2) (and the implicit function theorem).

Lemma 7.17. For all ` = 1, . . . , p, (Z`) ⊂ I k`−1
S .

Proof . By induction on`. Assume that (Z`) ⊂ I k`−1
S (vacuous assumption if

` = 0). It suffices to show thatDβj fi (j ) ∈ I k`+1−1 if |αi (j )| = k`+1. Let k = k`+1−1.

By Lemma 7.15,Dβj fi (j ) ∈
◦
I
k

S + (Dαfi (j ) : α ∈ N, |α| ≤ k). But, by property

(5), the ideal (Dαfi (j ) : α ∈ N, |α| ≤ k) ⊂ (Z`) ⊂ I k`−1
S ⊂ I k`+1−1

S . �

To complete the proof of Theorem 7.14: Clearly,I 0
S(f )

= I =
◦
I
0

S = I 0
S .

We first prove that, for allk, I k
S(f )

⊂ I k
S +(Z). (In particular, ifk ≥ kp−1, then

by 7.17, (Z) ⊂ I
kp−1
S ⊂ I k

S and I k
S(f )

⊂ I k
S .) By induction, we can assume that

I k−1
S(f )

⊂ I k−1
S + (Z) ⊂ I k

S + (Z). Hence it is enough to show thatDαfi ∈ I k
S + (Z)

if |α| = k < di . Supposedi = k`+1. We will show thatDαfi ∈
◦
I
k

S + (Z`): If
α ∈ N, thenα ∈ Nn−r ×N(k`) and |α| ≤ K , so thatDαfi ∈ (Z`), by property

(5) of (7.2). On the other hand, ifα 6∈ N, then Dαfi ∈
◦
I
k

S + (Z`), by 7.15 and
the previous case.

Finally, we show that for allk, I k
S ⊂ I k

S(f )
. We first remark thatJ kI is

generated by the elementsYβ j k
X fi (Y), β ∈ �i , |β| ≤ k, i = 1, . . . , s: By property

(3), for any f ∈ I , f (X) =
∑s

i =1 qi (X)fi (X), where suppqi ⊂ �i for each i .
Therefore,f (X + Y) mod(Y)k+1 is a linear combination overA = k[[X]] of the
alleged generators.

Consider the presentation ofF determined by the above set of generators

of J kI : Ap′ B′−→Aq −→F −→ 0. Here the columns ofB′ are indexed by (i , β),
where β ∈ �i , |β| ≤ k, i = 1, . . . , s, and the rows byα ∈ Nn, |α| ≤ k.

By induction, it is enough to show that
◦
I
k

S ⊂ I k
S(f )

. Since HA/I = HN , rk =

q − HA/I (k) = #{α ∈ N : |α| ≤ k}. Therefore, there are preciselyrk columns
of B′ with index (i , β) such that|β| ≤ k − di . It is clearly enough to show that,
for each column where|β| > k − di , all entries belong toI k

S(f )
. But these entries
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are the coefficients ofYβ fi (X +Y) mod(Y)k+1; in other words, the coefficients of
fi (X +Y) mod (Y)k−|β|+1, or the formal derivatives offi (X) of orders≤ k−|β| <
di ; the latter belong toI k

S(f )
, by definition. �

Remark 7.18. If we use the standard basis ofI for the generatorsfi (X), then
the proof of Theorem 7.14 (becomes a little simpler and) shows thatI k

S(f )
= I k

S

for all k (cf. [BM4, Sect. 5.3]). The weaker statement as formulated is the price
of using generators which provide a (regular) presentation of the Hilbert-Samuel
function.

Presentation of the Hilbert-Samuel function.Let I denote an ideal ink[[X]] =
k[[X1, . . . ,Xn]], let N ∈ D (n), and let fi (X), i = 1, . . . , s, denote a set of
generators ofI satisfying properties (1)–(5) of (7.2), whereK ≥ max|αi |−1. (We
use the notation of (7.1).) We will show that thefi (X) determine a codimension
0 presentation of the Hilbert-Samuel functionHk[[X]]/I in the sense of Definition
6.2, formally.

If k ≥ max|αi | − 1, then I k
S = I k+1

S , by 7.14 (and 7.9); writeI k
S = IS. By

7.17, (Z) ⊂ IS; IS is the “ideal of the formal Hilbert-Samuel stratumS” of I .
The “strict transform ofI by a blowing-upσ with smooth centreC” makes

sense formally: LetIC denote an ideal (X` : ` ∈ J ), for someJ ⊂ {1, . . . , n}. Say
t = #J . Then the formal blowing-up alongIC has fibre (overX = 0) given by the
(t − 1)-dimensional projective spacePt−1 = “σ−1(0)” of lines through 0 in{x ∈
kn : x` = 0 if ` 6∈ J}. Let ξ = [ξ` : ` ∈ J ] ∈ Pt−1 (in homogeneous coordinates).
If ξk /= 0, sayξk = 1, thenσ can be defined atξ by the homomorphismσ∗ξ :
k[[X]] → k[[X ′]], where X ′ = (X ′1, . . . ,X

′
n), given by the formal substitution

X` = X ′` , if ` 6∈ J or ` = k, X` = X ′k(ξ` + X ′`), if ` ∈ J\{k} .
Let f ∈ k[[X]]. We write σ∗ξ (f ) = f ◦σ. We define theorderµIC (f ) of f along IC
as max{d : f ∈ I d

C}. Thestrict transform of I byσ is defined, for eachξ ∈ Pt−1,
by the idealI ′ξ ⊂ k[[X ′]] generated byf ′ = (X ′exc)

−df ◦ σ, whered = µIC (f ), for
all f ∈ I . (X ′exc := X ′k in the substitution formula above.) We writeµξ(f ′) for the
order of f ′.

Theorems 7.20 and 7.21 describe the transforms ofI by admissible and
exceptional blowings-up (cf. (4.3), (4.4)). The effect of a morphism of type (ii)
is trivial, so it will follow that thefi (X) determine a codimension 0 presentation
of the Hilbert-Samuel function. WriteHI = Hk[[X]]/I for brevity. For eachi =
1, . . . , s, write

(7.19) fi (X) = fi (W,Z) =
∑
γ∈Nr

ciγ(W)Zγ .

First supposeIC ⊃ IS (i.e., σ is an admissible blowing-up). Then (Z) ⊂ IC .
By 7.14, di := µ(fi ) = µIC (fi ), i = 1, . . . , s. So by Lemma 5.1,µξ(f ′i ) ≤ di for
eachi .

Theorem 7.20. (cf. [H3, Sect. 6, Prop. 1], [BM4, Theorem 7.3]).Let ξ ∈ Pt−1 =
σ−1(0). Then:
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(1) HI ′
ξ
≤ HI (cf. [Ben]).

(2) HI ′
ξ

= HI if and only ifµξ(f ′i ) = di , i = 1, . . . , s.

(3) Let ξ = [ξ` : ` ∈ J ], as above. In case (2), there exists k≤ n − r such
that k ∈ J andξk /= 0; sayξk = 1. Let I ′Sξ denote the ideal of the formal Hilbert-

Samuel stratum of I′ξ. Then (using the notation of (7.19) and the substitution
formula above):

(i) (Z ′) ⊂ I ′Sξ , where X′ = (W ′,Z ′) = (W ′1, . . . ,W
′

n−r ,Z
′
1, . . . ,Z

′
r ).

(ii) Each f ′i (W ′,Z ′) =
∑

γ∈Nr c′iγ(W ′)(Z ′)γ , where c′iγ =

(W ′exc)
−(di−|γ|)ciγ ◦ σ.

(iii) The f ′i satisfy properties (1)–(5) of (7.2) with respect to the ideal I′ = I ′ξ
and the diagramN′ = N.

Secondly, assume thatr ≤ n − 2 and thatIC = (W1,W2). Let σ denote the
formal blowing-up alongIC . (An exceptional blowing-up (4.3)(iii) has this form.)

Theorem 7.21. Let ξ = [1, ξ2] ∈ P1. Then:
(1) I ′ξ is generated byσ∗ξ (I ), and (Z ′) ⊂ I ′Sξ , where I′Sξ is the ideal of the

formal Hilbert-Samuel stratum of I′ξ.
(2) Each f′i (W ′,Z ′) = (fi ◦ σ)(W ′,Z ′) =

∑
γ∈Nr c′iγ(W ′)(Z ′)γ , where c′iγ =

ciγ ◦ σ.
(3) The f′i satisfy properties (1)–(5) of (7.2) with respect to the ideal I′ = I ′ξ

and the diagramN′ = N. (In particular, HI ′ = HI andµξ(f ′i ) = di , i = 1, . . . , s.)

The following assertions will be used in our proofs of Theorems 7.20 and
7.21.

Lemma 7.22. Let P denote the ideal(X` : ` ∈ J ), for some J⊂ {1, . . . , n}.
Suppose that fi (X) ∈ I , i = 1, . . . , s, satisfy properties (1)–(3) of (7.2) and that
µP(fi ) = di := µ(fi ), i = 1, . . . , s. If f ∈ I and d = µP(f ), thenµP

(
qi (f )

) ≥ d−di ,
i = 1, . . . , s (where the qi (f ) are the quotients in the division formula of property
(3)).

Proof . For eachi , sinceµP(fi ) = di , infi depends on the variablesX`, ` ∈ J ,
alone. Letf ∈ I (f /= 0) and letd = µP(f ). Setei = µP

(
qi (f )

)
, i = 1, . . . , s, and

e = mini (ei + di ) < ∞. Let inPg, g ∈ k[[X]], denote the initial form ofg as a
formal expansion inX`, ` ∈ J , with coefficients ink[[X` : ` 6∈ J ]]. We claim
that

(7.23)
∑

{i :ei +di =e}
inPqi (f ) · inPfi /= 0 ,

Of course, for eachi , supp inPqi (f ) ⊂ �i (supp of inPqi (f ) as a power series
in X) and inPfi = infi + terms of higher order inX. Suppose that (7.23) is not
true. Write each term in the left-hand side as a sum of its homogeneous parts
with respect toX; thus

∑
(qi ,e′i

+ · · ·)(in fi + hi ,di +1 + · · ·) = 0, where the second

subscript in each case indicates degree of homogeneity and eachqi ,e′i
/= 0. If
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e′ = min(e′i + di ), then
∑

{i :e′i +di =e′}
qi ,e′i

· in fi = 0. Therefore allqi ,e′i
= 0 in this

sum, by property (2); a contradiction. It follows from (7.23) thatd = e and
thereforeei ≥ d − di , for all i . �

Corollary 7.24. (cf. [BM4, Lemma 7.1]). Suppose that fi (X) ∈ I , i = 1, . . . , s,
satisfy properties (1)–(3) of (7.2). Consider the strict transform of I by the formal
blowing-up along IC = (X` : ` ∈ J ), where J⊂ {1, . . . , n}, as above. IfµIC (fi ) =
di := µ(fi ), i = 1, . . . , s, then, for allξ ∈ σ−1(0) = Pt−1, the ideal I′ξ is generated
by f ′i = (X ′exc)

−di fi ◦ σ, i = 1, . . . , s.

Lemma 7.25. (cf. [BM4, Lemma 7.5]). Let hi (U ,V ) ∈ k[[U ,V ]] , i = 1, . . . , s,
where U = (U1, . . . ,Up), V = (V1, . . . ,Vq). Let J1 ⊂ k[[U ,V ]] denote the
ideal generated by the hi (U ,V ), and J0 ⊂ k[[U ,V ]] the ideal generated by
the hi (0,V ). Then HJ1 ≤ HJ0.

Proof . For eachλ ∈ k, let J (λ) ⊂ k[[U ,V ]] denote the ideal generated by
the hi (λU ,V ). If λ /= 0, then (U ,V ) 7→ (λU ,V ) induces an automorphism of
k[[U ,V ]] taking J (1) ontoJ (λ); in particular,HJ (λ) = HJ (1). Therefore,HJ (1) ≤
HJ (0), by semicontinuity of the Hilbert-Samuel function (cf. Remarks 9.1). But
J (1) = J1 andJ (0) = J0. �

Lemma 7.26. Let hi (U ,V ) ∈ k[[U ,V ]] , i = 1, . . . , s, where U = (U1,U2),
V = (V1, . . . ,Vq). Let J denote the ideal generated by the hi (U ,V ), and let J′

denote the ideal generated by the hi
(
U1,U1(c + U2),V

)
, where c ∈ k. Then

HJ ′ ≥ HJ .

Proof . If λ ∈ k, let J (λ) be the ideal generated by thehi
(
U1, λU2 + (1 −

λ)U1(c + U2),V
)
. Then J (0) = J ′, J (1) = J . If λ /= 0, then the substitution

(U1,U2,V ) 7→ (
U1, λU2 + (1− λ)U1(c + U2),V

)
induces an automorphism of

k[[U ,V ]] taking J = J (1) to J (λ). Therefore,HJ (λ) = HJ , for all λ /= 0. By
semicontinuity,HJ ′ = HJ (0) ≥ HJ . �

Proof of Theorem 7.20.We can assume thatW = (T,Y), Y = (Y1, . . . ,Yq),
T = (T1, . . . ,Tn−q−r ) and thatIC is the ideal (Y ,Z). We write

fi (T,Y ,Z) =
∑
γ∈Nr

ciγ(T,Y)Zγ , i = 1, . . . , s .

For eachi and γ, let ciγ,di−|γ| denote the homogeneous part ofciγ(T,Y) of
orderdi − |γ|. For eachi , sinceµIC (fi ) = di = µ(fi ), if |γ| < di thenciγ,di−|γ| =
ciγ,di−|γ|(Y) depends only onY , and

(in fi )(T,Y ,Z) =
∑
|γ|≤di

ciγ,di−|γ|(Y)Zγ .
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Let J = in I . By Remark 7.6,J is the ideal generated by the infi . Let η ∈ kq,
ζ ∈ kr , and letJ(η,ζ) ⊂ k[[X]] = k[[T,Y ,Z ]] denote the ideal generated by the

(in fi )(T, η + Y , ζ + Z) =
∑
|γ|≤di

ciγ,di−|γ|(η + Y)(ζ + Z)γ .

If λ ∈ k, let Iλ be the ideal generated by the (infi )(T, λη + Y , λζ + Z). If λ /= 0,
then (T,Y ,Z) 7→ (λT, λY , λZ) induces an automorphism ofk[[X]] taking Iλ to
J(η,ζ); therefore (as in 7.25),HJ = HI0 ≥ HIλ = HJ(η,ζ) . Then the following are
equivalent:

(7.27) (1) (infi )(T,Y , ζ + Z) has order< di , for somei ;
(2) HJ(0,ζ) < HJ

(3) ζ /= 0.

Indeed, the infi satisfy (7.2) with respect to inI , by Remark 7.6, so that
(1) ⇔ (2) by Theorem 7.14. (2)⇒ (3) since J(0,0) = J , and (3)⇒ (1) by
property (4) of (7.2).

Considerξ ∈ σ−1(0) = Pt−1 (where t = q + r ). By Corollary 7.24, for any
choice of homomorphismσ∗ξ : k[[X]] → k[[X ′]] as above, the strict transform
I ′ = I ′ξ of I is generated by thef ′i = (X ′exc)

−di fi ◦ σ, and the strict transform
J ′ = J ′ξ of J is generated by the (infi )′. Write ξ = [η, ζ] = [η1, . . . , ηq, ζ1, . . . , ζr ]
in homogeneous coordinates.

Case I. First suppose thatηk /= 0 for somek; say η1 = 1. Write X ′ =
(S,U ,V ) = (S1, . . . ,Sn−q−r ,U1, . . . ,Uq,V1, . . . ,Vr ), so thatσ∗ξ can be defined
by the formal substitution

T = S, Y1 = U1, Yk = U1(ηk + Uk) , k = 2, . . . , q, Z = U1(ζ + V ) .

Write η̃ = (η2, . . . , ηq) and Ũ = (U2, . . . ,Uq). For eachi = 1, . . . , s, we have

f ′i (S,U1, Ũ ,V ) : = U−di
1 fi

(
S,U1,U1(η̃ + Ũ ),U1(ζ + V )

)
(7.28)

=
∑
γ∈Nr

U−(di−|γ|)
1 ciγ

(
S,U1,U1(η̃ + Ũ )

)
(ζ + V )γ ;

(in fi )
′(S,U ,V ) =

∑
|γ|≤di

ciγ,di−|γ|(1, η̃ + Ũ )(ζ + V )γ = f ′i (0, 0, Ũ ,V ) .(7.29)

By (7.29) and Lemma 7.25,HI ′ ≤ HJ ′ . Consider the isomorphismθ:
k[[X]] → k[[X ′]] induced by the substitutionT = S, Y1 = U1, Yk =
(1 + U1)(ηk + Uk) − ηk , k = 2, . . . , q, and Z = (1 + U1)(ζ + V ) − ζ. Then θ
takesJ(η,ζ) to J ′. Therefore,HI ′ ≤ HJ ′ = HJ(η,ζ) ≤ HJ = HI .

Let us write (1′)–(5′) to mean (1)–(5) of (7.2) for thef ′i (with respect toI ′,
N′ = N). We obtain the conclusion of the theorem in Case I from the assertions:

(a) If µξ(f ′i ) = di , i = 1, . . . , s (i.e., (1′) holds), then properties (1′)− (5′) all
hold; in particular,HI ′ = HI by Lemma 7.5.

(b) If µξ(f ′i ) < di , for somei , thenHI ′ < HI .
For eachi , if µξ(f ′i ) = di , then by (7.28), the summands off ′i (0, 0,V ) indexed

by γ with |γ| < di contribute zero, so that



272 E. Bierstone, P.D. Milman

f ′i (0, 0,V ) =
∑
|γ|=di

ciγ,0(ζ + V )γ =
∑
|γ|=di

ciγ,0V γ

(each ciγ,0 = a constant); it follows thatf ′i (0, 0,V ) = (in f ′i ) (0, 0,V ) =
(in fi )(0, 0,V ). Therefore, ifµξ(f ′i ) = di for all i (i.e., (1′) holds), thenζ = 0
(by (7.27)). Moreover, for each̀ = 1, . . . , p, if µξ(f ′i ) = di , i = 1, . . . , s̀ , then
(2′k` ) follows from (2k` ) using 7.7.

For each j = 1, . . . , r , Dβj (fi (j ) ◦ σ) = U
|βj |
1 (Dβj fi (j )) ◦ σ = U

|βj |+1
1 g′j ,

where g′j = U−1
1 gj ◦ σ (the strict transform ofgj = Dβj fi (j )); thus g′j =

Dβj
(
fi (j )◦σ/U

|βj |+1
1

)
= Dβj f ′i (j ). For eachj and`, ∂g′j /∂V` = U−1

1 ∂(gj ◦σ)/∂V` =
(∂gj /∂Z`) ◦ σ. If µξ(f ′i ) = di , i = 1, . . . , s̀ , then (4′`) follows easily from (4̀);
likewise, (5′`) follows from (5̀ ).

Assume that (1′) holds. We prove (3′): Let g ∈ I ′. We consider 3 cases:
(i) First supposeg = f ′, wheref ∈ I ; sayµIC (f ) = d, so thatf ′ = f ◦ σ/U d

1 .
Write f =

∑
qi (f )fi according to property (3). Then, by 7.22,µIC

(
qi (f )

) ≥ d−di

for eachi ; i.e.,qi (f )◦σ is divisible byU d−di
1 , andf ′ =

∑
U−(d−di )

1

(
qi (f )◦σ)·f ′i ,

as required.
(ii) If g = U e

1 f ′, wheref ∈ I , then the result follows from (i).
(iii) Consider anyg ∈ I ′. By Lemma 7.3 and case (ii), it suffices to show that

for any k ∈ N, there existf ∈ I and e ∈ N such thatg − U e
1 f ′ ∈ (X ′)k . Write

g =
∑

ai f ′i according to Corollary 7.24. LetAi denote the Taylor polynomial
of degreek of ai , i = 1, . . . , s, and seth =

∑
Ai f ′i , so thatg − h ∈ (X ′)k . If

d = max di , thenU k+d
1 h =

∑
U k

1 Ai · U d−di
1 · U di

1 f ′i ; clearly, eachU d−di
1 · U k

1 Ai

can be written asbi ◦σ, so thatU k+d
1 h = f ◦σ, wheref =

∑
bi fi ∈ I . Therefore,

f ◦ σ = U k+d+e
1 f ′, for somee ∈ N, andh = U e

1 f ′, as required.
We have thus proved assertion (a) above. To prove (b): First suppose that

µξ(f ′i ) < di , for somei = 1, . . . , s1 (i.e., for someαi among the first block of
vertices ofN, wheredi = k1). For suchi , | exp f ′i | < k1; sinceHI ′ ≤ HI = HN ,
it follows that HI ′ < HN .

In general, suppose thatµξ(f ′i ) = di , i = 1, . . . , s̀ andµξ(f ′i0) < di0 = k`+1,
where s̀ < i0 ≤ s̀ +1. Then suppf ′i0 ∩ {α : |α| < k`+1} is nonempty and is
disjoint fromN(k`) by (5′`). It follows from (2′k` ) and dimension considerations
(cf. Corollary 7.4) thatHI ′ < HN . This completes Theorem 7.20 in Case I.

CaseII. Suppose thatηk = 0, k = 1, . . . , q. Thenζj /= 0, for somej = 1, . . . , r ;
sayζ1 = 1, so thatσ∗ξ can be defined by the formal substitution

T = S , Y = V1U , Z1 = V1 , Zj = V1(ζj + Vj ) , j = 2, . . . , r .

Write ζ̃ = (ζ2, . . . , ζr ) and Ṽ = (V2, . . . ,Vr ). For eachi = 1, . . . , s, we have

f ′i (S,U ,V1, Ṽ ) =
∑
γ∈Nr

V−(di−|γ|)
1 ciγ(S,V1U )(ζ̃ + Ṽ )γ̃ ,

(in fi )
′(S,U ,V ) =

∑
|γ|≤di

ciγ,di−|γ|(U )(ζ̃ + Ṽ )γ̃ = f ′i (0,U , 0, Ṽ )(7.30)
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(where γ̃ denotes (γ2, . . . , γr )). By (7.30) and 7.25,HI ′ ≤ HJ ′ . Consider the
isomorphismθ: k[[X]] → k[[X ′]] induced by the substitutionT = S, Y =
(1+V1)U , Z1 = V1, andZj = (1+V1)(ζj +Vj )−ζj , j = 2, . . . , r . Thenθ takes each
(in fi )(T,Y , ζ+Z) to (1+V1)di (in fi )′(S,U ,V ), hence takes the idealJ(0,ζ) to J ′. By
(7.27), (infi )′(S,U ,V ) has order< di , for somei , andHJ(0,ζ) < HJ . Therefore,
µξ(f ′i ) < di , for somei (by (7.30)), andHI ′ ≤ HJ ′ = HJ(0,ζ) < HJ = HI . This
completes the proof of 7.20. �

Proof of Theorem 7.21.For eachi = 1, . . . , s, we write

fi (W,Z) =
∑
γ∈Nr

ciγ(W)Zγ

as before, so that (as in the proof of Theorem 7.20)

(in fi )(W,Z) =
∑
|γ|≤di

ciγ,di−|γ|(W)Zγ .

Write X ′ = (W ′,Z ′) = (W ′1, . . . ,W
′

n−r ,Z
′
1, . . . ,Z

′
r ), so thatσ∗ξ : k[[X]] → k[[X ′]]

can be defined by the formal substitution

W1 = W ′1 , W2 = W ′1(ξ2 +W ′2) , Wk = W ′k , k = 3, . . . , n− r , Z = Z ′ .

By Remark 7.8, for eachi , (in fi )(0,Z) has orderdi ; in particular, there existsγ
such that|γ| = di andciγ,di−|γ|(W) = ciγ(0) /= 0. Therefore,µIC (fi ) = 0 for all i ,
and I ′ξ is generated by the

f ′i (W ′,Z ′) =
∑
γ∈Nr

ciγ
(
W ′1,W

′
1(ξ2 + W ′2),W3, . . .)(Z

′)γ .

Let us write (1′) − (5′) to mean properties (1)–(5) of (7.2) for thef ′i (with
respect toI ′ = I ′ξ, N′ = N). By the preceding remarks,µξ(f ′i ) = di for all i ; i.e.,
(1′) holds. Since (inf ′i )(0,Z) = (in fi )(0,Z) for eachi , (2′) holds by Lemma 7.7,
and (4′), (5′) follow trivially from (4), (5). By Lemma 7.26,HI ′ ≥ HI . But
HI ′ ≤ HN = HI , by Corollary 7.4. Therefore,HI ′ = HN and property (3′)
follows from Lemma 7.5. �

8. The stabilization theorem

We say thatN ∈ D (n) is a monotonediagram if

(α1, . . . , αn) ∈ N ⇒ (α1, . . . , 0
i′ th

place

, . . . , αi + αj
j′ th

place

, . . . , αn) ∈ N

wheneveri < j (cf. [H3]). SupposeN is monotone. Letα1, . . . , αs be the vertices
of N, in ascending order. Set∆i = αi +�i , i = 1, . . . , s, and�0 = Nn\N, as in
Sect. 3.
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SupposeA is a commutative ring with identity andHi (Y) ∈ A[Y ] =
A[Y1, . . . ,Yn] is a homogeneous polynomial of degreedi = |αi |, i = 1, . . . , s.
For each̀ ∈ N, set

P (`) =

{
YβHi (Y) , β ∈ �i , |β| = `− di , i = 1, . . . , s ,

Yγ , γ ∈ �0 , |γ| = `

}
.

Of course,P (`) is a basis of the free module (Y)`/(Y)`+1 of homogeneous
polynomials overA of degreè if and only if P (`) spans this space.

Theorem 8.1. There exists k(N) ∈ N such that, for any commutative ring A with
identity and any set of homogeneous Hi (Y) ∈ A[Y ] of degree di , i = 1, . . . , s, if
k ≥ k(N) and P (k) spans(Y)k/(Y)k+1, thenP (`) spans(Y)`/(Y)`+1, for all
` ≥ k.

Theorem 8.1 will be used in this article only in the case thatA is a field.
For each r = 0, . . . , n − 1, let prr : Nn → Nn−r denote the projec-

tion prr (α1, . . . , αn) = (αr +1, . . . , αn). Since N is monotone,Fr := (N ×
prr +1N)\prrN ⊂ Nn−r is a finite set, for eachr = 0, . . . , n − 1. (N × prnN
meansN.) We have�0 =

⋃n−1
r =0 (Nr × Fr ). Clearly,�0\F0 =

⋃n−1
r =1 (Nr × Fr ) is

unbounded in the direction of the first coordinateα1 (unless it is empty).
SinceN is monotone,N ∩ ({0} × Nn−r ) is monotone,r = 0, . . . , n − 1.

Lemma 8.2. Let 1≤ r ≤ n. For each i :
(1) If ∆i is unbounded in theαr -direction, thenαi = (0, . . . , 0, αi

r , . . . , α
i
n).

(2) If r ≥ 2 and∆i is unbounded in theαr -direction, then∆i is unbounded
in theα1-direction.

Proof. (1) Otherwise, ifβ = (0, . . . , 0, αi
1 + · · · + αi

r , α
i
r +1, . . . , α

i
n), thenβ ∈ N

andβ < αi , so thatβ +Nn bounds∆i ⊂ αi +Nn in theαr -direction.
(2) By (1),αi = (0, . . . , 0, αi

r , . . . , α
i
n). It is enough to show that, for eachβ1 ∈

N, if (β1, 0, . . . , 0, αi
r , . . . , α

i
n) ∈ N\∆i , then (0, . . . , 0, αi

r + β1, α
i
r +1, . . . , α

i
n) 6∈

∆i . Now, if β = (β1, 0, . . . , 0, αi
r , . . . , α

i
n) ∈ N\∆i , thenβ ∈ (αi + Nn)\∆i , so

that β = αj + γ, for somej < i , γ ∈ Nn. Thusαj = (αj
1, 0, . . . , 0, α

j
r , . . . , α

j
n),

where 0< αj
1 ≤ β1 and αj

` ≤ αi
`, ` = r , . . . , n. Hence |αj | < |αi |, since

otherwiseαi < αj (contrary to the ordering of the vertices). It follows that
(0, . . . , 0, αj

1 +αj
r , α

j
r +1, . . . , α

j
n) ∈ N is of the formαk +δ, for somek < i . Then

(0, . . . , 0, αi
r + β1, α

i
r +1, . . . , α

i
n) ∈ ∆k , so 6∈ ∆i . �

Definition 8.3. Set k′(N) = 1 + max{α : α ∈ F0 or α ∈ ∆i , for all i such that
∆i is bounded}. (Takemax∅ := 0.) Set k(N) = max

0≤r≤n−1
k′(N ∩ ({0} × Nn−r )).

Remarks 8.4.Suppose thatk ≥ k′(N). Then:
(1) If β ∈ �i (where 1≤ i ≤ s) and |β| = k − di , then�i is unbounded, so

thatβ + (1, 0, . . . , 0) ∈ �i (by Lemma 8.2 (2)).
(2) If γ ∈ �0 and |γ| = k, thenγ ∈ �0\F0, so thatγ + (1, 0, . . . , 0) ∈ �0.
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It follows that Y1P (k) ⊂ P (k + 1).

Proof of Theorem 8.1.For eachr = 0, . . . , n − 1, let Yr = (Yr +1, . . . ,Yn) and let

P (r , `) := {P(0,Yr ) = P(0, . . . , 0,Yr +1, . . . ,Yn) : P ∈ P (`)}
=

{
YβHi (0,Yr ), β ∈ �i ∩ ({0} × Nn−r ), |β| = `− di , i = 1, . . . , s,

Yγ , γ ∈ �0 ∩ ({0} × Nn−r ), |γ| = `

}
.

In particular,P (0, `) = P (`). Clearly, if P (k) spans the space (Y)k/(Y)k+1

of homogeneous polynomials of degreek in (Y1, . . . ,Yn), then P (r , k) spans
the space (Yr )k/(Yr )k+1 of homogeneous polynomials of degreek in Yr =
(Yr +1, . . . ,Yn), r = 0, . . . , n − 1.

Takek ≥ k(N) and assume thatP (k) spans (Y)k/(Y)k+1. It suffices to prove
that P (k + 1) spans (Y)k+1/(Y)k+2.

Lemma 8.5. If P (Yr ) is homogeneous of degree k+ 1 and divisible by Yr +1, then
there exists Q(Y) = Q(Y1, . . . ,Yn) ∈ SpanP (k + 1) such that Q(0,Yr ) = P(Yr ).

Proof . P(Yr )/Yr +1 ∈ SpanP (r , k), by the assumption thatP (k) spans (Y)k/
(Y)k+1. Therefore,P(Yr ) ∈ SpanP (r , k + 1), by Remarks 8.4 (applied toN ∩
({0} × Nn−r )). In other words, there existsQ(Y) ∈ SpanP (k + 1) such that
Q(0,Yr ) = P(Yr ). �

To complete the theorem: LetP(Y) be homogeneous of degreek + 1.
Write P = P1(Y1, . . . ,Yn) + P2(Y2, . . . ,Yn) + · · · + Pn(Yn), where, for eachr ,
Pr (Yr , . . . ,Yn) = P(0, . . . , 0,Yr , . . . ,Yn) − P(0, . . . , 0,Yr +1, . . . ,Yn); thus Pr is
divisible by Yr . Therefore it suffices to prove that, for eachr , if P(Yr ) =
P(Yr +1, . . . ,Yn) is a homogeneous polynomial of degreek + 1, divisible byYr +1,
thenP ∈ SpanP (k + 1).

By Lemma 8.5, this is true whenr = 0. In general, by Lemma 8.5, there
existsQ(Y) ∈ SpanP (k + 1) such thatP(Yr ) = Q(0,Yr ). ThusP(Yr ) = Q(Y) +
Q(0,Yr )−Q(Y), but Q(0,Yr )−Q(Y) =

∑r
q=1 Qq(Yq, . . . ,Yn), where eachQq

is divisible byYq, so the result follows by induction onr . �

9. Semicoherent presentation of the Hilbert-Samuel function

Assume thatA is any of the categories of local-ringed spaces overk, in (0.2)
(1), (2). LetM denote a manifold inA, and letX denote a closed subspace of
M .

Remarks 9.1.Let a ∈ |X| and let I = ÎX,a ⊂ k[[X]], X = (X1, . . . ,Xn), where

ÔM ,a is identified withk[[X]] via the Taylor homomorphism associated to local
coordinates (Definition 3.4). Definition 7.13 can be applied using a presentation

(7.12) induced by generators ofIX,a; thus, for eachk ∈ N, we get an ideal
◦
I

k

S,a

in OM ,a such that suppOM ,a/
◦
I

k

S,a = {x ∈ |X| : HX,x(k) = HX,a(k)} (as a germ
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at a). If we formulate 7.13 in a more general way, using arbitrary rankr , we get

a sheaf of ideals
◦
I

k

S(r ) ⊂ OM of finite type such that suppOM /
◦
I

k

S(r ) = {x ∈
|X| : HX,x(k) ≥ q − r }, whereq = #{α ∈ Nn : |α| ≤ k}; henceHX,·(k) is
Zariski-semicontinuous for eachk.

The moduleF of (7.12) itself admits an invariant definition as the completion
of the ring of germs of sections of the bundle ofk-jets onM at a, modulo the
ideal generated by germs of sections induced by elements ofIX,a (as anOM ,a-
module).

Theorem 9.2 (cf. [Ben]). Suppose that X is an object inA. Then the Hilbert-
Samuel function HX,· is Zariski-semicontinuous.

Proof . Let H denote any value of the Hilbert-Samuel function. By Remarks
9.1, for eachk ∈ N, {x ∈ |X| : HX,x(k) ≥ H (k)} is Zariski-closed in|X|. (It
is clear thatX need not be globally embedded.) SinceX is locally Noetherian,
{x ∈ |X|, HX,x ≥ H } is Zariski-closed in|X|. By Lemma 9.3,HX,· locally takes
only finitely many values. �

Let U be a regular chart inM with coordinates (x1, . . . , xn). Using the Taylor
homomorphismTa: OM ,a → k[[X]] = k[[X1, . . . ,Xn]], we associate to each

a ∈ U , the diagramNa = N(ÎX,a) ∈ D (n). We totally orderD (n) as follows:
To eachN ∈ D (n), associate the sequencev(N) obtained by listing the vertices
of N in ascending order and completing the list to an infinite sequence by using
∞ for all the remaining terms. IfN1,N2 ∈ D (n), we sayN1 < N2 provided
v(N1) < v(N2) with respect to the lexicographic ordering of such sequences.
Then every decreasing sequence inD (n) is finite.

Lemma 9.3. (1) For each a∈ U , {x ∈ U : Nx ≤ Na} is Zariski-open in U .
(2) Locally,Nx has only finitely many values.

Proof . (1) For eachα ∈ Nn, we defineNa(α) := dimkk[[X]]/
(
(Xβ : β > α)

+ÎX,a
)
, a ∈ U , where (Xβ : β > α) is the ideal generated by the monomials

Xβ , β > α. Then N·(α) is Zariski-semicontinuous onU , for each fixedα (by
an argument parallel to that of Remarks 9.1 for semicontinuity ofHX,x(k) =

dimkk[[X]]/
(
(X)k+1 + ÎX,x

)
).

If N ∈ D (n) andα ∈ Nn, setNN (α) := #{γ ∈ Nn\N : γ ≤ α}. It is easy
to see that ifN0,N ∈ D (n) andα0 is the largest vertex ofN0, thenN ≤ N0 if
and only if eitherNN (β) ≤ NN0 (β) for all β ≤ α0, or there existsα < α0 such
that NN (α) < NN0 (α) and NN (β) ≤ NN0 (β) for all β < α. If a ∈ U , then, for
all α ∈ Nn, Na(α) = NNa (α) (cf. Corollary 3.20). Therefore, (1) follows from
Zariski-semicontinuity ofN·(α) for each fixedα. (“Locally Noetherian” has not
been used to prove (1).)

(2) Let a ∈ U and letV be a neighbourhood ofa such that any decreasing
sequence of closed subspaces ofU stabilizes onV . Suppose there are infinitely
many values ofNx , x ∈ V ; then there is an infinite sequence of valuesN1 <
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N2 < · · · (since every decreasing sequence inD (n) is finite). Hence{x : Nx >
Nj }, j = 1, 2, . . ., is a decreasing sequence of Zariski-closed subsets ofU which
are distinct overV . But this sequence stabilizes onV , by local Noetherianness;
a contradiction. �

Theorem 9.4. Let a∈ X and letN ∈ D (n). Suppose we are given:
(1) A germ N= Nr (a) at a of a regular submanifold of M of codimension r,

and regular functionsw1, . . . , wn−r ∈ OM ,a which restrict to a coordinate system
on N .

(2) fi (W,Z) =
∑

γ∈Nr ciγ(W)Zγ ∈ k[[W,Z ]] , i = 1, . . . , s, where W =
(W1, . . . ,Wn−r ), Z = (Z1, . . . ,Zr ) and each Wj ,Zk ∈ m̂M ,a (the maximal ideal of

ÔM ,a).
(We are using the notation of (7.1), (7.2).) Assume that:

(i) Each Wj is induced bywj and ÎN ,a = (Z) (so we identifyÔM ,a =
k[[W,Z ]] ).

(ii) Each fi ∈ I := ÎX,a ⊂ k[[W,Z ]] , and every coefficient ciγ(W) =
Dγ

Z fi (W, 0) is the Taylor expansion of a regular function ciγ(w) ∈ ON ,a (cf. Def-
inition 3.4).

(iii) The fi satisfy properties (1)–(5) of (7.2) (where K≥ max|αi | − 1).
Let G1(a) =

{(
ciγ(w), di − |γ|) : |γ| < di , i = 1, . . . , s

}
. Then(

Nr (a),G1(a),E1(a) = ∅) is a codimension r presentation of HX,· at a (cf. Defi-
nition 6.2).

Our main aim in this section is to construct semicoherent data satisfying the
hypotheses of Theorem 9.4. (See Theorem 9.6 below.) But we first show how
Theorem 9.4 follows from the results in Sect. 7: We use the notation and the
hypotheses of Theorem 9.4.

Remarks 9.5.(1) Supposek ≥ maxdi − 1. ThenI k
S(f )

:= (Dαfi : |α| < di , i =

1, . . . , s) (Definition 7.9) is generated byZ1, . . . ,Zr and theDβciγ , |β| < di −|γ|,
|γ| < di . Thus k[[W,Z ]]/I k

S(f )
identifies with the completion ofON ,a/IS(f )(a),

whereIS(f )(a) ⊂ ON ,a is the ideal generated by the∂|β|ciγ/∂w
β , |β| < di − |γ|,

|γ| < di , so that suppON ,a/IS(f )(a) = {x ∈ |N | : µx(ciγ) ≥ di − |γ|, |γ| <
di , i = 1, . . . , s}.

(2) For eachk ∈ N, set I k
S,a =

∑
j≤k

◦
I

j

S,a. By Theorem 7.14, ifk ≥
max di − 1, thenI k

S,a = I k+1
S,a ; say I k

S,a = IS,a. suppOM ,a/IS,a is the germ
S = SHX (a) of {x ∈ |X| : HX,x = HX,a}. It follows from Theorem 7.14 that
S ⊂ N = Nr (a).

Proof of Theorem 9.4.Let σ: M ′ → M be a local blowing-up (ata) with smooth
centre C , and let X ′,N ′ be the strict transforms ofX,N (respectively). Let
a′ ∈ σ−1(a). If f ∈ ÔM ,a, then the “strict transform off ”, f ′ = y−d

exc f ◦ σ (at a′),
whered = µIC (f ) and IC = ÎC,a ⊂ ÔM ,a = k[[W,Z ]], is defined inÔM ′,a′ (up
to an invertible factor).
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Consider the caseC ⊂ S ⊂ N ; i.e., IC ⊃ IS, where IS = ÎS,a. We
can assumew = (t , y), y = (y1, . . . , yq), t = (t1, . . . , tn−q−r ), where C is
{y = 0} ⊂ N . If a′ ∈ N ′, then there existw′1, . . . , w

′
n−r ∈ OM ′,a′ and

W ′1, . . . ,W
′

n−r ,Z
′
1, . . . ,Z

′
r ∈ ÔM ′,a′ satisfying the analogues of (1) and (i) in

9.4, such that̂σ∗a′ : k[[T,Y ,Z ]] = ÔM ,a → ÔM ′,a′ = k[[T ′,Y ′,Z ′]] (where
W ′ = (T ′,Y ′)) is given by a formal substitution as in Case I of the proof
of 7.20), and f ′i (W ′,Z ′) =

∑
γ∈Nr c′iγ(W ′)(Z ′)γ , i = 1, . . . , s, where each

c′iγ = Y−(di−|γ|)
exc ciγ ◦ σ; of course,σ induces a homomorphismON ,a → ON ′,a′

and eachc′iγ = y−(di−|γ|)
exc ciγ ◦ σ makes sense as an element ofON ′,a′ .

Theorem 7.20 can be translated as follows: Leta′ ∈ σ−1(a). Then:
(1) HX′,a′ ≤ HX,a.
(2) The following are equivalent: (i)HX′,a′ = HX,a; (ii) µa′ (f ′i ) = di , i =

1, . . . , s; (iii) a′ ∈ N ′ andµa′ (c′iγ) ≥ di − |γ|, |γ| < di , i = 1, . . . , s.
(3) If HX′,a′ = HX,a, then thef ′i satisfy properties (1)–(5) of (7.2) with respect

to I ′ = ÎX′,a′ andN′ = N. (In particular,S′ ⊂ N ′, whereS′ = SHX′ (a
′).)

Now assumer ≤ n−2 and consider the case thatC is given byw1 = w2 = 0.
Clearly,N ′ = σ−1(N ). Let a′ ∈ σ−1(a). Then there existw′1, . . . , w

′
n−r ∈ OM ′,a′

andW ′1, . . . ,W
′

n−r ,Z
′
1, . . . ,Z

′
r ∈ ÔM ′,a′ satisfying the analogues of (1) and (i) in

9.4, such that̂σ∗a′ : k[[W,Z ]] → k[[W ′,Z ′]] is given by a substitution as in the
proof of 7.21, andf ′i (W ′,Z ′) =

∑
γ∈Nr c′iγ(W ′)(Z ′)γ , i = 1, . . . , s, where each

c′iγ = ciγ ◦ σ. Theorem 7.21 means:

(1) X ′ = σ−1(X).
(2) The f ′i satisfy properties (1)–(5) of (7.2) with respect to the idealI ′ =

ÎX′,a′ andN′ = N. (In particular,HX′,a′ = HX,a.)
Since the effect on

(
Nr (a),G1(a),E1(a) = ∅) of a transformation of type (ii)

(4.4) is trivial, we see that Theorem 9.4 is a consequence of Theorems 7.14, 7.20
and 7.21. �

Let U be a regular chart inM with coordinates (x1, . . . , xn). Let a0 ∈ U . We
identify ÔM ,a0 with k[[X1, . . . ,Xn]] using the Taylor homomorphism (Definition

3.4), and defineN = N(ÎX,a0). By a coordinate change, we can assumeN is
monotone (Sect. 8) and satisfies the conditions of (7.1). We get a semicoherent
presentation of theHX,·, from the following. (We use the notation of (7.1).)

Theorem 9.6. There is a covering of M by regular coordinate charts U , each of
which satisfies the following assertions. Let a0 ∈ U and letN = N(ÎX,a0) (with
respect to the coordinates x= (x1, . . . , xn)). Assume thatN is monotone. Then we
can construct:

(1) a Zariski-open neighbourhood V of a0 in U ;
(2) a regular submanifold N of V containing a0, defined by r elements of

O (U )V whose gradients are linearly independent on N ;
(3) formal power series fi =

∑
γ∈Nr ciγZγ , i = 1, . . . , s, in Z = (Z1, . . . ,Zr )

whose coefficients ciγ are regular functions on N induced by elements ofO (U )V ;
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such that: (i)w = (w1, . . . , wn−r ) restricts to a regular coordinate system on
N , where x= (w, z) = (w1, . . . , wn−r , z1, . . . , zr ).

(ii) Let S(f ) = {a ∈ |N | : µa(ciγ) ≥ |αi |−|γ|, for all |γ| < |αi |, i = 1, . . . , s}.
Then, for all a∈ S(f ), the hypotheses of 9.4 are satisfied by Nr (a) := germ of N
at a, and fi (W,Z) =

∑
ciγ,a(W)Zγ , i = 1, . . . , s, where each ciγ,a(W) is the

Taylor expansion at a of ciγ = ciγ(w). Moreover, HX,a ≤ HX,a0 for all a ∈ V ,
and S(f ) = SHX,a0

∩ V .

Proof. We will obtain the data required by induction with respect to the blocks
of vertices ofN of given order. (See (7.1).) To begin, we can assume there are
f 0
i ∈ O (U ), i = 1, . . . , s, such that thef 0

i generateIX on U and expf 0
i ,a0

(w, z) =
αi . (If f ∈ O (U ) anda ∈ U , write fa(w, z) ∈ k[[w, z]] for the Taylor expansion
of f at a; cf. Remark 3.7). We can assumeHX,· has only finitely many values
HX,a, a ∈ U .

For each` = 1, . . . , p, write w` = (w1, . . . , wn−r , z1, . . . , zr−r` ) and y` =
(zr−r`+1, . . . , zr−r`−1), so that w`−1 = (w`, y`) (where r0 = 0 and w0 =
(w, z) = x). Let Z1, . . . ,Zr be indeterminates. For all̀ = 1, . . . , p, write Z` =
(Zr−r`+1, . . . ,Zr ) and Y` = (Zr−r`+1, . . . ,Zr−r`−1), so thatZ` = (Y`,Z`−1)
(Z1 = Y1).

Let K ∈ N, K ≥ max di − 1. Put N0 = U . For each̀ = 1, . . . , p, we will
construct:

(9.7) (1̀ ) a Zariski-open neighbourhoodV` of a0 in U ;
(2`) a regular submanifoldN` of V` (of codimensionr`) defined byr` ele-

ments ofO (U )V` whose gradients are linearly independent onN`, such thatw`

restricts to a regular coordinate system onN`;
(3`) expansionsf `i (w`,Z`) =

∑
γ∈Nr` c`iγ(w`)(Z`)γ , i = 1, . . . , s, where the

c`iγ(w`) = (Dγ
Z`

fi )(w`, 0) are regular functions onN ` induced by elements of
O (U )V` ;

such that the following properties (9.8) (a`)–(d̀ ) are satisfied:

(9.8) (à ) expf `i ,a0
= αi , i = 1, . . . , s, wheref `i ,a0

(w`,Z`) =
∑

c`iγ,a0
(w`)(Z`)γ

∈ k[[w`,Z`]] and c`iγ,a(w`) is the Taylor expansion ofc`iγ at a ∈ N`.

(b`) For all j = r − r` + 1, . . . , r − r`−1, let h`j (w`−1) = Dβj f `−1
i (j ) (w`−1, 0).

(Recall thatw`−1 = (w`, y`). Eachβj ∈ {0} × Nr` ; Dβj is a partial derivative
with respect to the regular variablesy` and the formal variablesZ`−1.) Then, in
V`, N` ⊂ N`−1 is defined byh`j (w`, y`) = 0 for all j , and det(∂h`/∂y`)(a) /= 0
for all a ∈ N`, whereh` = (h`r−r`+1, . . . , h

`
r−r`−1

).

Remark 9.9. For eacha ∈ N`, the formal implicit function theorem gives
h`a(w`, y`) = U `

a (w`, y`)
(
y` − y`a(w`)

)
, where y`a(w`) ∈ k[[w`]] r`−r`−1 and

U `
a (w`, y`) is an invertible matrix with entries ink[[w`, y`]]. It follows from

(bk), k = 1, . . . , `, that, for eacha ∈ N`, there is an identification ofÔM ,a

with k[[w`,Z`]] induced by the identificationÔM ,a
∼= k[[w`−1,Z`−1]] =
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k[[w`, y`,Z`−1]] (given by induction) and the formal coordinate changeY` =
y`−y`a(w`). Via this identification,ÎN`,a ⊂ k[[w`,Z`]] is the ideal (Z`) generated
by Zr−r`+1, . . . ,Zr .

(c`) Let a ∈ N`. For i = 1, . . . , s, f `i ,a(w`,Z`) ∈ I `a , where I `a = ÎX,a ⊂
k[[w`,Z`]]. Moreover, for i = 1, . . . , s̀ , f `i ,a(w`,Z`) = f `−1

i ,a

(
w`, y`a(w`) +

Y`,Z`−1
)
.

Remark 9.10. Let g`j (w`,Z`) = Dβj f `i (j )(w
`,Z`), j = r − r` + 1, . . . , r . (Each

Dβj is a derivative with respect toZ`.) It follows from (bk) and (ck), k =
1, . . . , `, that eachg`j ,a(w`,Z`) ∈ (Z`) and det(∂g`a/∂Z`)(0, 0) /= 0, whereg` =
(g`r−r`+1, . . . , g

`
r ), a ∈ N`.

(d`) Let a ∈ N`. If i > s̀ , β ∈ N` and|β| ≤ K , thenDβ

Z`
f `i ,a(w`,Z`) ∈ (Z`).

To construct data as above: Suppose, by induction, that for eachk = 1, . . . , `−
1, we have (9.7) (1k)–(3k) satisfying (9.8) (ak)–(dk).

Defineh` as in (b̀ ) above. By (ak) and (bk), k < `, and the definition of theβj

in (7.1), det(∂h`/∂y`)(a0) /= 0. Therefore, there is a Zariski-open neighbourhood
V ′` of a0 in V`−1, such that{h`(w`, y`) = 0} defines a regular submanifold
N` ⊂ N`−1 ∩ V ′` of codimensionr` in V ′` (the h`j are induced by elements of
O (U )V ′

`
as in Lemma 3.5), and det(∂h`/∂y`)(a) /= 0, for all a ∈ N`. Thus we

have got (b̀).
For eacha ∈ N`, we definey`a(w`) as in Remark 9.9. Iff (w`−1,Z`−1) ∈

ÔM ,a = k[[w`−1,Z`−1]], then we write f (w`,Z`) to denotef after the iden-

tification of ÔM ,a with k[[w`,Z`]] via the formal change of variablesY` =
y` − y`a(w`); i.e., f (w`,Z`) meansf

(
w`, y`a(w`) + Y`,Z`−1

)
. We clearly still

have expf `−1
i ,a0

(w`,Z`) = αi , i = 1, . . . , s (because of the lexicographic ordering
of multiindices).

Remark 9.11.Supposef (w`−1,Z`−1) =
∑

γ∈Nr`−1 fγ(w`−1)(Z`−1)γ , where each
fγ(w`−1) is a regular function onN `−1. Let a ∈ N `. Considerfa(w`−1,Z`−1) ∈
k[[w`−1,Z`−1]]. Let β ∈ Nr` ; sayβ = (δ, γ), whereγ ∈ Nr`−1. Then

Dβ

Z`
fa(w`,Z`) = Dβ

(y`,Z`−1)
fa(w`, y`,Z`−1)

∣∣
y`=y`a (w`)+Y` .

Thus Dβ

Z`
fa(w`, 0) = Dβ

(y`,Z`−1)
fa
(
w`, y`a(w`), 0

)
is the formal Taylor expansion

at a of the regular function onN` given by the restriction ofDδ
y`

fγ(w`, y`) to N`.

Lemma 9.12. Let f (w`,Z`) ∈ ÔM ,a0 = k[[w`,Z`]] . Then we can write f uniquely
as

f (w`,Z`) =
s̀∑

i =1

qi (w
`,Z`)f `−1

i ,a0
(w`,Z`) + r (w`,Z`) mod(Z`)K +1 ,

where
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qi (w
`,Z`) =

∑
β∈�`

i
|β|≤K−di

ciβ(w`)(Z`)β , i = 1, . . . , s̀ ,

r (w`,Z`) =
∑

γ∈N r`\N`
|γ|≤K

cγ(w`)(Z`)γ .

Moreover, if f(w`,Z`) =
∑

γ∈Nr` fγ(w`)(Z`)γ , where each fγ is induced by an
element ofO (U )V ′

`
, then there is a Zariski-open neighbourhood V` of a0 in V ′` in

which each ciβ or cγ is the restriction to Ǹ of an element ofO (U )V` .

Proof. Let A(w`,Z`) denote the square matrix with entries ink[[w`,Z`]] whose
columns are the partial derivatives of order≤ K with respect toZ` of

(9.13)
(Z`)β f `−1

i ,a0
(w`,Z`) , β ∈ �`

i , |β| ≤ K − di , i = 1, . . . , s̀ ,

(Z`)γ , γ ∈ Nr`\N` , |γ| ≤ K .

The rows ofA are indexed byγ ∈ Nr` , |γ| ≤ K , and the columns are indexed
by (i , β) andγ as in (9.13). To specifyA precisely, let us say that the rows are
listed byγ ∈ N` in ascending order followed byγ 6∈ N` in ascending order, and
that the columns are listed first by (i , β) in ascending order ofαi + β, followed
by γ in ascending order.

Since expf `−1
i ,a0

= αi for all i , it follows that A(0, 0) is lower triangular with

1’s on the diagonal. In particular, detA(0, 0) /= 0. ThereforeA(w`, 0) is invertible.
Given f ∈ k[[w`,Z`]], let F (w`) be the (column) vector with entries

(Dγ

Z`
f )(w`, 0), γ ∈ Nr` , |γ| ≤ K , ordered in the same way as the rows ofA. Then

there is a unique (column) vectorC(w`) (with entriesciβ(w`), cγ(w`) listed in
the same way as the columns ofA) such thatF (w`) = A(w`, 0) ·C(w`); this is
the first assertion of the lemma.

Each entry ofA(w`, 0) is (the Taylor expansion ata0 of) the restriction to
N` of an element ofO (U )V ′

`
(by 9.11). The second assertion then follows from

Cramer’s rule. �

Now, for eachi > s̀ , we apply Remark 9.11 and Lemma 9.12 tof `−1
i :

f `−1
i (w`,Z`) =

s̀∑
j =1

q`j (w`,Z`)f `−1
j (w`,Z`) + r `(w`,Z`) mod(Z`)K +1 .

Definition 9.14. For (3`), we set

f `i (w`,Z`) = f `−1
i (w`,Z`) , i = 1, . . . , s̀ ,

f `i (w`,Z`) = f `−1
i (w`,Z`)−

s̀∑
j =1

q`j (w`,Z`)f `−1
j (w`,Z`) , i = s̀ + 1, . . . , s .

Properties (à), (c̀ ) and (d̀ ) follow. This completes the construction of (1`)–
(3`).
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To complete the proof of 9.6: TakeN = Np and let fi =
∑

ciγZγ denote
f p
i =

∑
cp

iγ(Zp)γ , i = 1, . . . , s. (Note thatw = wp and Z = Zp.) We must find
a Zariski-open neighbourhoodV of a0 in Vp, with respect to whichN and the
fi satisfy the conditions of 9.6. SetS(f ) = {a ∈ |N | : µ(fi ,a) ≥ di , i = 1, . . . , s}.
ThenS(f ) = {a ∈ |N | : µa(ciγ) ≥ di − |γ|, |γ| < di , i = 1, . . . , s}, and properties
(4), (5) of (7.2) are satisfied by thefi ,a, a ∈ S(f ).

At a0, properties (1) and (2) of (7.2) are consequences of the fact that
expfi ,a0 = αi , i = 1, . . . , s. The property thatµ(fi ,a) ≤ di , i = 1, . . . , s, is
open inN with respect to the Zariski topology. Likewise, for each` andd ∈ N,
property (2̀,d) of (7.2) is open. Thus there is a Zariski-open neighbourhoodV ′

of a0 in Vp such that, for alla ∈ N ∩ V ′, µ(fi ,a) ≤ di , i = 1, . . . , s, and such
that (2̀ ,d) is satisfied onS(f ) ∩ V ′ for all ` and eachd ≤ k

(
N(`)

)
. (Recall Def-

inition 8.3.) By the Stabilization Theorem 8.1, property (2) of (7.2) is satisfied
throughoutS(f ) ∩ V ′. (This is the one place where we use 8.1.)

Consider the idealsI k
S(f )

andI k
S of Theorem 7.14 (ata0), wherek ≥ max di −

1. I k
S(f )

is generated by the ideal ofN and theDβciγ , |β| ≤ di − |γ|; also,

I k
S is generated by explicitly determined elements ofO(U ) (Remarks 9.1 and

Definition 7.13). There is a Zariski-open neighbourhood ofa0 in U , in which
HX,· ≤ HX,a0. SinceOM is coherent, by Theorem 7.14 and Remarks 9.5 there is
a Zariski-open neighbourhoodV of a0 in V ′ such thatS(f ) ∩ V = SHX,a0

∩ V =
{a ∈ V : HX,a = HN}. Property (3) of (7.2) holds at all sucha, by Lemma 7.5.
This completes the proof of Theorem 9.6. �

Remarks 9.15.(1) r in Theorem 9.6 isnot determined by the Hilbert-Samuel
function HX,a0. For example, consider the following diagramsN1, N2 ∈ D (3) :
N1 = N × N∗1, whereN∗1 ⊂ N2 has vertices{β ∈ N2 : |β| = 3}, andN2 =
(N×N∗2)\{(0, 0, 2)}, where the vertices ofN∗2 ⊂ N2 are (0, 2), (2, 1) and (4, 0).
ThenN1, N2 are both monotone,HN1 = HN2 (in the language of Sect. 7), but
for N2 all 3 variables are essential.

(2) Write e = eX,a0, whereeX,a0 := HX,a0(1)− 1. Thenn − r ≤ e sinceN
hasn − (HN (1)− 1

)
= n − e vertices of order 1, each representing an essential

variable.

(3) Consider a sequence of transformations (6.7) whose centres are 1/2-
admissible. Suppose that

(
Np(a),F1(a),E1(a) = E(a)\E1(a)

)
and

(
Nq(a),G1(a),

E1(a)
)

are two presentations (perhaps merely formal) ofHXj ,· at a ∈ Mj ,
of codimensions 1≤ p < q, respectively. The construction of Ch. II (ap-
plied with

(
Np(a),F1(a),E1(a)

)
playing the role of “

(
N1(a),H1(a),E1(a)

)
”

in 6.12) gives invq−p+1(a) = (HXj ,a, s1(a); 1, 0; . . . ; 1, 0) (i.e., (1,0) is listed
q − p times) and, moreover, provides an (equivalent) codimensionq presen-
tation

(
N ′q(a),G ′

1 (a),E1(a)
)

of HXj ,· at a, whereN ′q(a) ⊂ Np(a) (cf. Remark
6.16). (If we begin with a codimensionp = 0 presentation ofHXj ,· (e.g., a stan-
dard basis), then Construction 4.18 provides an equivalent codimensionp = 1
presentation as used in the preceding statement.) In general, therefore, we modify
the constructive definition of invX in the following way: If

(
Nr (a),C1(a),E1(a) =
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E(a)\E1(a)
)

is a codimensionr presentation of inv1/2 = HXj ,· at a ∈ Mj , where
n − r < e := eXj ,a, then we put inve−(n−r )(a) = (HXj ,a, s1(a); 1, 0; . . . ; 1, 0) (i.e.,
(1, 0) is insertede − (n − r ) − 1 times). (If n − r = e (i.e., Xj is smooth at
a), we just have inv1(a) = (HXj ,a, s1(a)

)
.) As in Sect. 6,

(
Nr (a),H1(a),E1(a)

)
,

whereH1(a) = C1(a)∪ (E1(a), 1), is a codimensionr presentation of inv1 at a.
If n − r < e, therefore,

(
Nr (a),H1(a),E1(a)

)
is a codimensionr presentation

of inve−(n−r ) at a, so we re-index it as
(
Nr (a),He−(n−r )(a),Ee−(n−r )(a)

)
(also

settingEq(a) = ∅, 1< q ≤ e− (n − r )
)
. Then the following termνe−(n−r )+1(a)

of invX (a) (or ν2(a) in the case thatn − r = e) is given by (the analogue of)
6.12, and the definition of invX proceeds as in Sect. 6. The resulting definition of
invX does not depend onr (nor on the ambient dimensionn; cf. Remarks 13.1)
and it agrees with that of Sect. 6 in the hypersurface case.

Chapter IV. Desingularization theorems

Theorem 1.14 is used in this chapter to obtain several desingularization theo-
rems. LetA denote any of the classes of local-ringed spacesX = (|X|,OX ) over
k in (0.2) (1)–(3). We prove embedded resolution of singularities in Sect. 10
for geometric spacesX ∈ A. (cf. Remarks 1.7(2).) In the algebraic and ana-
lytic categories of (0.2) (1),(2), algebraic techniques make it possible to prove
resolution of singularities under more general hypotheses onX (Sect. 11); for
example, for spacesX that are not necessarily reduced. We recover, in particu-
lar, the theorems of Hironaka [H1]. Our desingularization algorithm does not,a
priori , exclude the possibility of blowing up “resolved points”; i.e., a prescribed
centre of blowing up may include points whereXj is smooth and has only normal
crossings with respect toEj . (See Example 2.3.) In Sect. 12, we show how to
modify our invariant to avoid blowing up resolved points.

The desingularization theorems of Sects. 10–12 are stated for spacesX such
that X is globally embedded in a smooth ambient spaceM and |X| is quasi-
compact (so that invX has a maximal locus which provides a smooth centre of
blowing up). These hypotheses are relaxed in Sect. 13. We deduce universal “em-
bedded” resolution of singularities for spacesX that are not necessarily globally
embedded. For real or complex analytic spaces that are not necessarily com-
pact, we prove canonical resolution of singularities by locally finite sequences of
blowings-up with global smooth centres. (For example, we recover Hironaka’s
theorem on complex analytic spaces [AHV1,2], [H2].)

10. A geometric desingularization algorithm

Let M ∈ A be a manifold, and letX = (|X|,OX ) denote a closed subspace
of M . Recall that RegX ⊂ |X| denotes the set of smooth points ofX, and
SingX := |X|\RegX. Clearly, if X is a hypersurface, then SingX is Zariski-
closed in|X|.
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Proposition 10.1. SupposeA is one of the classes of (0.2) (1),(2) (soA satisfies
(3.9)). Assume X/= ∅. Then there is a proper closed subspace Y of X such that
|Y | = SingX .

Proof. Assume first thatX is a subspace of a manifoldM ∈ A of pure dimension
n. Let IX be the ideal ofX in OM . If a ∈ |X|, defineeX,a := HX,a(1)− 1 (the
local embedding dimension ofX at a). For eache ∈ N, let J (e) ⊂ OM denote
the ideal of finite type generated locally byIX and the minors of ordern−e+ 1
of the Jacobian matrix (with respect to regular local coordinates) of a system of
local generators ofIX (cf. 7.11). ThusIX ⊂ J (e) and suppOM /J (e) = {x ∈
|X| : eX,x ≥ e}. DefineI (e) := [IX : J (e)] ⊃ IX . ThusIX,a = J (e)a if and
only if I (e)a = OM ,a. Then:

(10.2) a ∈ RegX if and only if IX,a = J (eX,a)a.
To prove (10.2): Without loss of generality, we can assume thateX,a = n (by

passing to a local embedding ofX in a submanifold of dimensioneX,a). Then
J (eX,a)a ⊂ OM ,a is the ideal generated byIX,a and the partial derivatives (with
respect to regular local coordinates)∂f /∂xi , for all f ∈ IX,a. (SinceeX,a = n,
each (∂f /∂xi )(a) = 0.) We have to show thatIX,a = J (n)a if and only if
IX,a = 0. “If” is trivial. Conversely, if IX,a /= 0, then the order ofJ (n)a is
strictly less than that ofIX,a.

Now let e∗ = mina∈|X| eX,a and letY ⊂ X denote the subspace defined by
the sheaf of idealsIY =

⋂
e≥e∗

(
I (e) + J (e)

)
.

Let a ∈ |X|. SinceJ (e)a = OM ,a if and only if e > eX,a, it follows that
IY,a = OM ,a if and only if I (e)a = OM ,a, e∗ ≤ e≤ eX,a. Therefore,IY,a = OM ,a

if and only if IX,a = J (e)a, e∗ ≤ e≤ eX,a. On the other hand, ife1 ≥ e2, then
J (e1) ⊃ J (e2). Therefore,IY,a = OM ,a if and only if IX,a = J (eX,a)a. By
(10.2),a ∈ RegX if and only if a 6∈ |Y |; i.e., |Y | = SingX.

Of course,IY ⊃ IX . Considera ∈ |X| such thateX,a = e∗. If a ∈ RegX,
thenIY,a = OM ,a % IX,a. If a 6∈ RegX, thenIX,a $ J (eX,a)a, so thatIY,a =
I (eX,a)a + J (eX,a)a % IX,a.

In this proof, it is clear that the assumption thatX is globally embedded in
M is only a matter of convenience; the arguments can be rewritten without this
assumption. �

Consider a sequence of transformations (1.1) with invX -admissible centres.
If a ∈ |Mj |, setSinvX (a) = {x ∈ |Mj | : invX (x) = invX (a)}.

Remarks 10.3.(1) If a ∈ SingXj , thenSinvX (a) ⊂ SingXj because the Hilbert-
Samuel functionHXj ,x already distinguishes between smooth and singular points
x of Xj .

(2) Suppose thatXj is smooth. LetSj := {x ∈ |Xj | : s1(x) > 0}; then Sj

is a Zariski-closed subset of|Xj |, by Proposition 6.6. Clearly, ifa ∈ Sj , then
SinvX (a) ⊂ Sj .

A desingularization algorithm; proof of Theorem 1.6.Suppose|X| is quasi-
compact, so that invX takes only finitely many values on|X|. We can get an
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invX -admissible sequence (1.1) by defining the centres of blowing upCj recur-
sively as follows: Assume thatσ1, . . . , σj have been defined. We introduce the
extended invariant inveX (a), a ∈ Mj , as in Remark 1.16, using any total ordering
on the subsets ofEj . If Xj is not smooth, letCj denote the locus of maximal val-
ues of inveX on SingXj . Since SingXj is Zariski-closed, it follows from Theorem
1.14 and Remarks 10.3 (1) thatCj is smooth. By 1.14 (4), after finitely many
blowings-up with such centres,Xj is smooth.

If Xj is smooth, letCj denote the locus of maximal values of inve
X on Sj .

By Theorem 1.14 and 10.3 (2),Cj is smooth. Therefore,Xj +1 is smooth. After
finitely many blowings upσj +1, . . . , σk with such centres,Sk = ∅. It is clear
from the definition ofs1 that, if Xk is smooth andSk = ∅, then eachH ∈ Ek

which intersectsXk is the strict transform inMk of σ−1
i +1(Ci ), for somei such that

Xi is smooth alongCi ; therefore,Xk and Ek simultaneously have only normal
crossings. We have proved Theorem 1.6.

Remark 10.4 It may happen in Theorem 1.6 thatX ′ = ∅; 1.6 is a meaningful
geometric desingularization theorem at least in the case that RegX is Zariski-
dense in|X|.
Geometric spaces.Let A be any of the classes of (0.2) (1), (2). SupposeX ∈
A. Let S be a subset of|X|. We say that a subspaceY of X (in A) is a smallest
subspace whose support contains Sprovided thatS ⊂ |Y | and if T ⊂ Y , S ⊂ |T|
then T = Y . SinceX is locally Noetherian, there is auniquesmallest subspace
S of X whose support containsS; S is the intersection of all subspaces ofX (in
A) whose support containsS. In particular, there is a unique smallest subspace
X∗ of X such that|X∗| = |X|; namely,X∗ = |X|.
Definition 10.5. We say that X isgeometrically reducedif X = X∗. We say that
X is a geometric spaceif RegX is Zariski-dense in X (i.e., X= RegX ).

Proposition 10.6. X is geometric if and only if X is geometrically reduced.

Proof. If X is geometric, then of courseX is geometrically reduced. AssumeX
is geometrically reduced. By Proposition 10.1, there is a subspaceX1 of X such
that X1 $ X and |X|\RegX = |X1|. Let X0 = RegX, so thatX0 is geometrically
reduced. DefineX2 := |X|\|X0|. ThenX2 is geometrically reduced. Clearly,X2 ⊂
X1 and |X| = |X0| ∪ |X2|. SinceX is geometrically reduced,X ⊂ X0

∐
X2, where

X0
∐

X2 is the subspace ofM (with support|X0| ∪ |X2|) defined by the ideal of
finite type IX0 · IX2. Moreover, RegX2 ⊂ |X0| because a smooth point ofX2

outside |X0| would necessarily be a smooth point ofX0
∐

X2, hence ofX, in
contradiction to the definition ofX0.

We must showX2 = ∅. Set Y = X2, and letY0,Y1,Y2 be the analogues for
Y of X0,X1,X2 above. It is enough to showY = Y2 because then, ifY /= ∅,
Y = Y2 ⊂ Y1 $ Y ; a contradiction. Now, since RegY ⊂ |X0|, |Y0| ⊂ |X0|, so
that |Y |\|Y0| ⊃ |Y |\|X0| = |X|\|X0|. Therefore,Y ⊃ |Y |\|Y0| ⊃ |X|\|X0| = Y ;
i.e., Y = Y2. �



286 E. Bierstone, P.D. Milman

The desingularization algorithm above can be modified so that a quasi-
compact geometric space is desingularized by transformations that preserve the
class of geometric spaces: LetM ∈ A be a manifold andX a closed sub-
space ofM . AssumeX is geometrically reduced. We consider a sequence of
transformations (1.1) where eachXj +1 is defined not as the strict transform of
Xj , but rather as the (unique) smallest subspace ofσ−1

j +1(Xj ) whose support con-

tains |σ−1
j +1(Xj )|\|σ−1

j +1(Cj )|; in this case, we say thatXj +1 is the geometric strict
transformof Xj by σj +1. EachXj +1 is geometrically reduced.

Using the geometric strict transform, our invariant invX (a), a ∈ Mj , j =
0, 1, 2, . . ., can be defined by induction onj as before provided that the centres
Ci , i < j , are invX -admissible in the sense of (1.2), and our desingularization
algorithm makes sense exactly as before for the following reason: Givenj , let
Yj +1 andXj +1 denote the strict and geometric strict transforms ofXj , respectively.
Let a ∈ Xj anda′ ∈ σ−1

j +1(a). SinceHXj ,· is locally constant onCj andIXj +1,a′ ⊃
IYj +1,a′ , HXj +1,a′ ≤ HYj +1,a′ ≤ HXj ,a, and if HXj +1,a′ = HXj ,a, thenXj +1,a′ = Yj +1,a′ .
We get the following variant of 1.6:

Theorem 10.7. Suppose that X is geometrically reduced and that|X| is quasi-
compact. Then there is a finite sequence of blowings-up (1.1) with smoothinvX-
admissible centres Cj (where each Xj +1 denotes the geometric strict transform of
Xj ) such that:

(1) For each j , either Cj ⊂ SingXj or Xj is smooth and Cj ⊂ Xj ∩ Ej .
(2) Let X′ and E′ denote the final geometric strict transform and exceptional

set, respectively. Then X′ is smooth and X′, E′ simultaneously have only normal
crossings.

If σ denotes the composite of the sequence of blowings-upσj , thenσ(E′) ⊂
SingX; clearly,σ−1(RegX) is a smooth open subset of|X ′|, andσ−1(RegX) is
open and closed inX ′. (In fact, if T = σ−1(RegX) and JT ⊂ OX′ denotes the
ideal of T, then|T| = |X ′|\suppJT .)

11. Algebraic desingularization theorems

In this section,A denotes any of the categories in (0.2) (1) or (2), so thatA
satisfies (3.9). LetX = (|X|,OX ) ∈ A. Assume thatX is a closed subspace of
a manifold M = (|M |,OM ) ∈ A, and letIX ⊂ OM be the ideal sheaf ofX.
SinceOM is a coherent sheaf of rings andIX an ideal of finite type, the radical√

IX ⊂ OM is an ideal of finite type. LetXred denote the subspace ofM defined
by the ideal sheafIXred :=

√
IX ; thus Xred ⊂ X and |Xred| = |X|. (Xred is the

“associated reduced subspace” ofX.)
Let a ∈ |X|. Let I|X|,a ⊂ OM ,a denote the ideal{f ∈ OM ,a: γ∗(f ) = 0

for every homomorphismγ∗: OM ,a → k[[ t ]] such that Kerγ∗ ⊃ IX,a}. (I|X|,a
is the ideal of germs of regular functions ata which “vanish on every formal
curve” γ(t)). ThusIX,a ⊂ IXred,a ⊂ I|X|,a. Using Artin’s approximation theo-
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rems (in the case of curves; i.e., with a single independent variablet), we can
replace the formal curvesγ in the preceding definition by formal curvesγ such
that dimOM ,a/Kerγ∗ = 1 (i.e., Kerγ∗ defines a regular curve which admits a
formal parametrization as above, and therefore, for example in the analytic case,
a convergent parametrization.) LetV (I|X|,a) be the germ of a subspace ofM
with associated idealI|X|,a. It follows that V (I|X|,a) depends only on the germ
|X|a of |X| at a, and V (I|X|,a) is the smallest germ of a subspace with sup-
port |V (I|X|,a)|. In particular, ifT is (locally) a Zariski-closed subset of|X|, we
likewise have an idealIT,a ⊃ I|X|,a. (If k is not algebraically closed,I|X| is
not necessarily a sheaf of ideals of finite type. In the definition above, we have
assumed thatk is the residue fieldOM ,a/mM ,a (e.g., as in the categories of real
analytic spaces or real algebraic varieties); in general,Fa = OM ,a/mM ,a is an
extension of the ground fieldk, andk[[ t ]] would be replaced byF[[ t ]], whereF
runs over all finite extensions ofFa.)

In the case of analytic spaces,I|X|,a ⊂ OM ,a is the ideal of elements which
vanish on|X|a, and |V (I|X|,a)| = |X|a. (These assertions are consequences of
the curve-selection lemma, which can be proved, for example, using Sect. 10:
By Theorem 1.6,|X| is an image of a manifold by a proper regular mapping;
therefore, anyb ∈ |X|\{a} close enough toa can be joined toa by a “convergent
curve” γ as above.) The preceding assertions for analytic spaces are not valid in
the real algebraic example following.

Example 11.1.Let X = V (x2
3 − x1x2

2 ) ⊂ R3. ThenXred = X. But if a = (a1, 0, 0),
wherea1 < 0, thenI|X|,a = (x2, x3).

Singular subsets ofX. If a ∈ |X|, we let S = SHX,a denote the Hilbert-Samuel

subspace ofa; i.e., IS =
∑∞

k=0

◦
I

k

S(rk), where eachrk = q − HX,a(k) (in the
notation of Remarks 9.1). In particular,|S| = {x ∈ |X|: HX,x ≥ HX,a}.

Definitions 11.2.Sing|X| := {a ∈ |X|: V (I|X|,a) is not smooth; i.e.,OM ,a/I|X|,a
is not a regular local ring}.

SingdimX := {a ∈ |X|: dimV (I|X|,a) < dimXa}. (dim denotes the Krull di-
mension of the corresponding local ring; thus,dimV (I|X|,a) = dimOM ,a/I|X|,a.)

SingH X := {a ∈ |X| : I|X|,a $ I|S|,a, where S= SHX,a}.
Σ := SingH X ∪ SingdimX .

Remarks 11.3.SingdimX ⊂ SingXred because, ifXred,a is smooth, thenI|X|,a =
IXred,a, so that dimV (I|X|,a) = dimXred,a = dimXa. Clearly, SingH X∪SingXred⊂
SingX, with equality if X = Xred. It is not true, in general, thatΣ ⊂ SingXred

(or even Sing|X| ∪ SingdimX) becauseHX,x need not be locally constant at a
smooth point ofXred. (For example, consider the complex analytic subspaceX
of C2 defined by the intersection of idealsIX = (x2) ∩ (x4, y). ThenIXred = (x)
but SingH X = {0}.)

Note that Sing|X| (or even Sing|X| ∪SingdimX) need not be a Zariski-closed
subset of|X|; for example, the real algebraic subsetX: z3 − x2yz− x4 = 0 of
R3 is smooth except on the half-linex = z = 0, y ≥ 0.
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Theorem 11.4. Let a∈ |X| and let S= SHX,a . Then:

(1) eS,a ≤ dimXa; moreover, Sa = Xa if and only if Xa is smooth.

(2) Suppose that a6∈ Σ. Then Xred,a is smooth, Sa = Xred,a, and invX (a) =
(HX,a, 0;∞). (Here invX is “at year zero”.)

(Recall that, for alla ∈ |X|, eX,a := HX,a(1)− 1 is the minimal local embed-
ding dimension ofX at a.) We will need the following three lemmas.

Lemma 11.5. Let A be a Noetherian local ring, and let I⊂ q be ideals of A, where
q is prime. Write

√
I =

⋂
pi for the (unique) irredundant prime decomposition of√

I . If dimA/q = dimA/I , thenq = pi for some i .

Proof. Sinceq ⊃ I andq is prime,q ⊃ √
I =

⋂
pi ; therefore,q ⊃ pi for some

i , say i = 1. Then dimA/p1 ≥ dimA/q = dimA/
√

I = max dimA/pi , so that
dimA/p1 = dimA/q. Therefore,q = p1. �

Example 11.6. Let X be the real-analytic spaceV (x3
3 − x2

1 x3
2 ) ⊂ R3 and let

a = (a1, 0, 0), a1 /= 0. ThenI|X|,a is generated byx3 − x2/3
1 x2; V (I|X|,a) is a

component ofXred,a = Xa, by 11.5. But there is another component, given by

x2
3 + x2/3

1 x2x3 + x4/3
1 x2

2 .

Lemma 11.7. Let A be a Noetherian local ring. Letp ⊂ I be ideals of A, where
p is prime and I=

√
I . If dimA/p = dimA/I , then I = p.

Proof . Let
⋂s

i =1 = pi denote the irredundant prime decomposition ofI . Then
dimA/I = max dimA/pi = dimA/p1 say. Now,p ⊂ I ⊂ p1 and dimA/I =
dimA/p1; therefore,p = p1. Thus p1 = p ⊂ pi , i = 1, . . . , s; a contradiction
unlesss = 1. HenceI = p. �

Lemma 11.8. Suppose a6∈ Σ and V(I|X|,a) is smooth. Then V(I|X|,a) = Xred,a.

Proof . Since V (I|X|,a) is smooth and dimV (I|X|,a) = dimXred,a, V (I|X|,a)
is a component ofXred,a, by Lemma 11.5. Let

⋂
pi denote the irredundant

prime decomposition ofIXred,a; thus theXi := V (pi ) are the irreducible com-
ponents ofXred,a. Sincea 6∈ SingH X, |Xi | = |V (I|X|,a)| for all i . (Otherwise,
the Hilbert-Samuel function would not be locally constant, by a simple semi-
continuity argument.) Therefore, for eachi , dimOM ,a/I|X|,a ≤ dimOM ,a/pi ≤
dimOM ,a/IXred,a = dimOM ,a/I|X|,a, so that all are equal; sincepi ⊂ I|X|,a are
both prime, it follows thatpi = I|X|,a. In particular, there is only one irreducible
componentXi . �

Proof of Theorem 11.4.We identify ÔM ,a with k[[X]] = k[[X1, . . . ,Xn]] using
local coordinates. LetN = N(I ) denote the diagram of initial exponents of
I = ÎX,a ⊂ k[[X]]. We use the notation of (7.1). Letfi (X) = fi (W,Z) ∈ I ,
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i = 1, . . . , s, be the standard basis ofI , so that thefi satisfy (7.2) (1)–(5). Let
J = ÎS,a ⊂ k[[X]].

(1) It follows from Theorem 7.14 and property (4) of (7.2) thatZ =
(Z1, . . . ,Zr ) ⊂ J , so that eS,a ≤ n − r . On the other hand, dimXa =
dimk[[X]]/I ≥ n − r . (Consider the homogeneous idealH in k[[X]] gener-
ated by the initial monomials monfi (X). Then dimXa = dimk[[X]]/H since dim
is determined by the Hilbert-Samuel function, and dimk[[X]]/H ≥ n−r because
the monfi (X) are independent ofW = (W1, . . . ,Wn−r ).) Thus eS,a ≤ n − r ≤
dimXa ≤ eX,a, and it follows thatSa = Xa if and only if Xa is smooth.

(2) Suppose thata 6∈ Σ; i.e., dimV (I|X|,a) = dimXa ≥ n − r and

I|S|,a = I|X|,a. Then (Z) = (Z1, . . . ,Zr ) ⊂ J = ÎS,a ⊂ Î|S|,a = Î|X|,a, so that

dimV (I|X|,a) = n − r and, by Lemma 11.7,̂I|X|,a = (Z1, . . . ,Zr ); in particular,
V (I|X|,a) is smooth andSa = V (I|X|,a). By Lemma 11.8,V (I|X|,a) = Xred,a. For

eachi = 1, . . . , s, write fi (W,Z) = Zγ i
+ Σγ∈Nr ciγ(W)Zγ , whereαi = (0, γ i ) ∈

Nn−r ×Nr ; thenciγ = 0 if |γ| < |γ i |. (Otherwise, by Theorem 7.14,̂IS,a % (Z).)
It follows from the constructive definition of invX that invX (a) = (HX,a, 0;∞).�

Corollary 11.9. Σ = SingH X ∪ SingXred. If X = Xred, thenΣ = SingX .

Proof. By Remarks 11.3,Σ ⊂ SingH X∪SingXred and, ifX = Xred, then SingH X∪
SingXred = SingX. But by Theorem 11.4, ifa 6∈ Σ, thena 6∈ SingH X∪SingXred.
�

Remarks 11.10.If a ∈ |X|, let |SinvX (a)| := {x ∈ |X| : invX (x) ≥ invX (a)}. (This
is Zariski-closed, by 1.14 (1).) Ifa /∈ Σ, thenIS,a = IT,a, whereT = |SinvX (a)|,
by (2) in the proof of 11.4. (̂IS,a = (Z), as in (2), and the argument at the end

showsÎT,a = (Z).) Define SinginvX := {a ∈ |X| : I|X|,a $ IT,a}. It follows that
Σ = SinginvX ∪ SingdimX.

Lemma 11.11. If |X| is quasi-compact, thenΣ is a Zariski-closed subset of|X|.

Proof . Let SingZar
H X := {a ∈ |X| : HX,· is not constant on any Zariski-

open neighbourhood ofa in |X|}. Clearly, SingZar
H X is Zariski-closed and

SingH X ⊂ SingZar
H X. Since|X| is quasi-compact,HX,· takes only finitely many

values. Therefore, for alla ∈ |X|, Za := ∪{|SHX,b | : b ∈ |X|, HX,b 6≤ HX,a}
is Zariski-closed, and{x ∈ |X| : HX,x ≤ HX,a} = |X|\Za is Zariski-open (cf.
(2)⇒ (1) in the proof of Lemma 3.10). It follows (using Theorem 11.4 (2)) that if
a 6∈ Σ, thena 6∈ SingZar

H X; hence SingZar
H X∪SingXred⊂ SingH X∪SingXred = Σ.

ThusΣ = SingZar
H X ∪ SingXred. �

Remarks 11.12.The same argument shows that, in general, any quasi-compact
subset of|X| admits a neighbourhoodU such thatU ∩Σ is closed in the induced
Zariski topology ofU ; in fact, such thatU ∩Σ = (U ∩SingXred)∪{a ∈ U : HX,·
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is not constant on any open neighbourhood ofa in the induced Zariski topology
of U }.

Proposition 11.13. Let a∈ Σ and let S= SHX,a . Then|S|a ⊂ Σa.

Proof . By restrictingX to a suitable neighbourhood ofa, we can assume that
HX,x ≤ HX,a for all a ∈ |X|, and thatHX,· takes only finitely many values, so
that Σ = SingZar

H X ∪ SingXred, as in the proof of 11.11. Then|S| = {x ∈ |X| :
HX,x = HX,a}.

First assume thatXred,a is smooth; we can therefore assume thatXred is
smooth, so thatΣ = SingH X = SingZar

H X. Then |S| $ |X| sincea ∈ SingH X.
Suppose the assertion is false. Then|S|\Σ is a Zariski-open subsetU1 of |X|
such thatU1,a /= ∅ and HX,x = HX,a, x ∈ U1. Write |X|\Σ =

⋃k
j =1 Uj , where

the Uj are nonempty Zariski-open subsets of|X| on which HX,· takes distinct
constant values. We can assume thatUj ,a /= ∅ for all j (by shrinking to a suitable
neighbourhood ofa). Even then,k > 1. (Otherwise,|X| = |S| ∪ Σ, so there
existsb ∈ Σ\|S|. SinceHX,b < HX,a, HX,· assumes a minimal value< HX,a.
This value is attained on a Zariski-open set, in contradiction with|X| = U1∪Σ.)
Put Y1 = |X|\⋃j≥2 Uj , Y2 = |X|\U1. Then Y1,Y2 are Zariski-closed subsets of
|X| such that|X| = Y1 ∪ Y2, a ∈ Y1 ∩ Y2, but neitherY1 ⊂ Y2 nor Y2 ⊂ Y1; this
is impossible since|X| = Xred is smooth.

Secondly, assumea ∈ SingXred but that IXred,a is prime. We can assume
dimSx ≤ dimSa, for all x ∈ |S| (by Zariski-semicontinuity ofHS,·). Suppose
there existsb ∈ |S|\Σ. Then Sb = Xred,b by 11.4, so that dimXa ≥ dimSa ≥
dimSb = dimXb = dimXa (the latter equality sinceHX,a = HX,b); hence all are
equal. SinceIXred,a is prime, it follows from 11.7 thatIXred,a = ISred,a. But, by
11.4, eSred,a ≤ eS,a ≤ dimXa = dimXred,a ≤ eXred,a; therefore all are equal and
Xred,a is smooth. (A contradiction.)

It remains to consider the case thatIXred,a is not prime. LetZi denote the
distinct irreducible components ofXred,a, and let Xa = ∪Yj corresponding to
an irredundant primary decomposition ofIX,a. Then each|Yj | ⊂ |Zi | for some
i = i (j ), and each|Zi | = |Yj | for somej = j (i ). For eachj = j0, HX,a > HWj0

,a,
whereWj0 =

⋃
j/=j0

Yj . It follows from semicontinuity ofHX,· that, |S|a ⊂ ∩|Yj | ⊂
∩|Zi | ⊂ (SingXred)a ⊂ Σa (the latter inclusion by Theorem 11.4 (2)). �

Embedded desingularization theorems.We assume that, for allX ∈ A, |X|
is quasi-compact. (Examples include schemes of finite type overk, or compact
analytic spaces overk.) In general, however (in view of 11.12), Theorem 11.14
below applies to desingularizeX over some neighbourhood of any quasi-compact
subset of|X|. In Sect. 13, we will obtain a global canonical desingularization
theorem for non-compact analytic spaces.

Let X ∈ A. AssumeX is embedded in a manifoldM . SetX0 = X, M0 = M .

Theorem 11.14 (cf. [H1, Main Theorem I∗]). There is a finite sequence of
blowings-up (1.1) with smoothinvX-admissible centres Cj such that:
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(1) For each j , either Cj ⊂ Σj = SingH Xj ∪SingXj ,red or Xj ,red is smooth and
Cj ⊂ Xj ∩ Ej .

(2) Let X′ and E′ denote the final strict transform of X and exceptional set,
respectively. Then HX′,· is locally constant on|X ′|, X′red is smooth, and X′red,E

′

simultaneously have only normal crossings.

Proof . The algorithm is an obvious modification of that of Theorem 1.6: (The
assertions are the same whenX = Xred.) We define the centres of blowing upCj

as follows. Assume thatσ1, . . . , σj have been defined. We introduce the extended
invariant inveX (a), a ∈ Mj , as in Remarks 1.15, using any total ordering on the
subsets ofEj . If Σj /= ∅, whereΣj := SingH Xj ∪ SingdimXj , let Cj denote the
locus of maximal values of inve

X on Σj . SinceΣj is Zariski-closed (11.11), it
follows from 1.15 and 11.13 thatCj is a smooth closed subspace ofXj . By 1.14
(4), after finitely many blowings-up with such centres,Σj = ∅; i.e. (by 11.9),
Xj ,red is smooth andHXj ,· is locally constant on|Xj |.

Now assumeXj ,red is smooth andHXj ,· is locally constant on|Xj |. We consider
invXj , starting withXj ⊂ Mj as our spaces andEj as our exceptional set “at year
zero”. (In particular, ifa ∈ |Xj |, then s1(a) := #{H ∈ Ej : a ∈ H }.) Define
Sj := {x ∈ |Xj | : s1(x) > 0} and let Cj denote the locus of maximal values
of inve

Xj
on Sj . ThenCj is a smooth closed subspace ofXj (cf. 10.3 (2)), and if

σj +1: Mj +1 → Mj is the blowing-up with centreCj , then Xj +1,red is smooth (by
3.14) andHXj +1,· is locally constant on|Xj +1| (by 1.14 (1)). After finitely many
blowings-upσi , j < i ≤ k, with such centresCi ⊂ Si , we getSk = ∅; therefore,
Xk,red is smooth,HXk ,· is locally constant on|Xk |, andXk,red, Ek simultaneously
have only normal crossings. �

By Theorem 11.4, the Hilbert-Samuel spaceSHX′,a of X ′ (in Theorem 11.14)
coincides withX ′red at every pointa. If σ: M ′ → M denotes the composite of
the blowings-upσj in Theorem 11.14, thenE′ = σ−1(Σ), whereΣ = SingH X ∪
SingXred; in particular,σ restricts to an isomorphism over RegX. Of course,
X ′ = ∅ if Σ = |X|.

Example 11.15.Let X ⊂ R3 denote the space (restriction to theR-rational points
of an affine scheme overR) defined by (y2− x3)2 + z2 = 0. ThenX is a reduced
hypersurface whose order (and therefore whose Hilbert-Samuel function) is con-
stant. Clearly,Σ = |X|. But X can be desingularized in a meaningful sense by
blowings-up over the origin.

Example 11.15 shows that the Hilbert-Samuel function itself is not a delicate
enough invariant for resolution of singularities. But the desingularization algo-
rithm determined by invX (in the proof of Theorem 11.14 above) nevertheless
makes good sense because, for eachj , we can ignore componentsC of the max-
imum locus of invX on Σj such thatCa = |X|a for all a ∈ C . The result will
be: HX′ locally constant on|X ′|, |X ′| /= ∅ smooth, and|X ′|, E′ simultaneously
normal crossings.
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Consider a sequence of invX -admissible blowings-up (1.1). For eachj , let
Tj = SingZar

inv Xj (defined in analogy with SingZar
H Xj ); then |Xj |\Tj is Zariski-open

and dense in|Xj |. Let a ∈ Tj , for somej . If |Xj |a is irreducible, then (the germ
at a of) |SinvX (a)| ⊂ Tj ,a (as in the proof of Proposition 11.13). We do not know
whether this is true in general. If it is, then there is a variant of the preceding
result with eachCj ⊂ Tj . (In particular,σ(E′) ⊂ T0 has empty intersection with
a Zariski-open and dense subset of|X|.)

12. How to avoid blowing up resolved points

Consider the algorithm used in Theorem 11.14. (It will be clear that the main
result of this section, Theorem 12.4 below, applies to the other desingularization
theorems of Sects. 10,11 as well.) Our invariant invX first prescribes a finite
sequence of blowings-upσj +1: Mj +1 → Mj , j = 0, . . . , k, with smooth admissible
centresCj , such that:

(12.1) (1) For eachj , Cj ⊂ Σj = SingH Xj ∪ SingXj ,red.
(2) Σk+1 = ∅; i.e., Xk+1,red is smooth andHXk+1,· is locally constant on|Xk+1|.

Theorem 12.2. Suppose that Xk+1 /= ∅. Then there is a further finite sequence
of blowings-upσj +1: Mj +1 → Mj , j = k + 1, . . . , `, with smooth centres Cj , such
that:

(1) For each j , Cj ⊂ Xj ∩ Ej , Cj has only normal crossings with respect to
Ej , and Cj includes no point where Xj ,red and Ej simultaneously have only normal
crossings.

(2) X̀ +1,red and È +1 simultaneously have only normal crossings.

(It follows from (1) and (12.1) (2) thatXj +1,red is smooth andHXj +1,· is locally
constant on|Xj +1|, j = k, . . . , `.) Theorem 12.2 is a consequence of Theorem 12.4
below (applied withM = Mk+1, X = Xk+1,red andE = Ek+1).

SupposeX ⊂ M are smooth spaces and thatE is a collection of smooth
hypersurfacesHi ⊂ M , i = −q, . . . ,−1, 0, such thatE has only normal crossings.
(We assume that, for alla ∈ |X|, all nonempty germsHi ,a are distinct and none
containsXa.) We consider a sequence of transformations

(12.3)
−→ Mj +1

σj +1−→ Mj −→ · · · −→ M1
σ1−→ M0 = M

Xj +1 Xj X1 X0 = X
Ej +1 Ej E1 E0 = E

such that, for eachj : (1) σj +1 is a (local) blowing-up with smooth centreCj ⊂
Xj ∩Ej such thatCj andEj simultaneously have only normal crossings. (2)Xj +1

is the strict transform ofXj by σj . (3) Ej +1 = {Hi ,j +1 : i = −q, . . . , j + 1},
where Hi 0 = Hi , i = −q, . . . , 0, Hi ,j +1 is the strict transform ofHij by σj +1,
i = −q, . . . , j , andHj +1,j +1 = σ−1

j +1(Cj ). (By (1), Xj +1 is smooth andEj +1 has only
normal crossings.)

Let E∗j = {Hij : i ≤ 0}, j = 0, 1, . . . . If a ∈ Mj , write E(a) = {H ∈ Ej :
H 3 a} and E∗(a) = {H ∈ E∗j : H 3 a}. Each centreCj will be chosen,
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more precisely, in the following way: For eacha ∈ Cj , there will be a subset
F (a) of E(a) containingE(a)\E∗(a), such thatXj , F (a) simultaneously have
normal crossings ata, Cj , F (a) simultaneously have normal crossings ata, and
Cj ,a ⊂ Ha for all H ∈ E(a)\F (a).

Theorem 12.4. There is a sequence of blowings-up as in (12.3), such that:
(1) For each j , Cj ⊂ Σ∗j , whereΣ∗j := {a ∈ |Xj |: Xj and Ej do not simulta-

neously have normal crossings at a}.
(2) X̀ +1 and È +1 simultaneously have only normal crossings.

Lemma 12.5. For each j ,Σ∗j is a (nowhere dense) Zariski-closed subset of|Xj |.

Proof. For allΛ ⊂ Ej , setXj (Λ) = Xj ∩
⋂

H∈Λ H . ThenΣ∗j =
⋃
Λ⊂Ej

{a ∈ |Xj (Λ)|:
eXj (Λ),a > d(a)− #Λ, whered(a) = dimXj ,a}. Sinced(a) is locally constant on
|Xj |, Σ∗j is Zariski-closed, by Remarks 9.1. �

Remarks 12.6.For eachj and i = −q, . . . , j , Xj ∩Hij is a hypersurface inXj ; let
Iij ⊂ OXj denote the corresponding (principal) ideal. Leta ∈ |Xj |. ThenXj and
Hij have normal crossings ata if and only if νIij ,a = 0 or 1 (cf. Remark 1.8).
Clearly,a 6∈ Σ∗j if and only if: (1) νIij ,a = 0 or 1, i = −q, . . . , 0. (This condition
is automatically satisfied fori = 1, . . . , j .) (2) Xj ∩Ej :={Xj ∩Hij : i = −q, . . . , j }
has normal crossings ata, and any two nonempty germs (Xj ∩Hij )a are distinct.

Note that ifCj ⊂ Xj ∩Hij = V (Iij ), thenIi ,j +1 is the transformy−1
excσ

−1
j +1(Iij ) =

[σ−1
j +1(Iij ) : yexc] of Iij by (the restriction toXj +1 of) the blowing-upσj +1 (cf.

Proposition 3.13 ff.); i.e.,Ii ,j +1,b, b ∈ σ−1
j +1(a), is given by the transform of the

infinitesimal presentation{(f , 1)}, wheref denotes a generator ofIij ,a.

Proof of Theorem 12.4.We argue by induction on dimX. Consider any sequence
of transformations (12.3). WriteJi 0 = Ii 0, i = −q, . . . , 0. For eachj and i =
−q, . . . , j , let Ji ,j +1 denote the strict transform ofJij by σj +1 (more precisely, by
σj +1|Xj +1); i.e.,Ji ,j +1 =

∑
k≥0[σ−1

j +1(Jij ) : yk
exc]. ThenIij = Jij , i = 1, . . . , j , and

Iij = Dij ·Jij , i = −q, . . . , 0, whereDij is a product of exceptional divisorsIhj ,
h = 1, . . . , j . If a ∈ |Xj | andfi , gi denote generators ofIij ,a, Jij ,a (respectively),
i = −q, . . . , 0, thenfi = Di · gi , whereDi is a monomial in generators ofIhj ,a,
h = 1, . . . , j . (Di is the greatest factor offi having this form.)

Set Jj = J−q,j · · · · · J0j , j = 0, 1, . . . . Let a ∈ |X0|. Write ν1(a) = νJ0,a.
If g = g−q · · · · · g0, wheregi generatesJi 0, i = −q, . . . , 0, thenν1(a) = µa(g)
andGa = {(g, µa(g))} is a presentation ofν1 at a of codimension 0 (inX0). We
can use the construction of Chapter II to extend inv1/2 = ν1 to an invariant invJ
which is defined inductively over a sequence of (local) blowings-upσj +1: Xj +1 →
Xj and successive transformsJi ,j +1 of Jij , i = −q, . . . , 0, where the successive
centres of blowing up are invJ -admissible. Ifa ∈ |Xj |, then inv1/2(a) = νJj ,a.

Consider any such sequence. Leta ∈ |Xj | and let t(a) denote the number
of distinct idealsJij ,a ⊂ OXj ,a, i = −q, . . . , 0, such thatνJij ,a ≥ 1. Clearly,
νJj ,a ≥ t(a), andνJj ,a = t(a) if and only if all proper idealsJij ,a, i = −q, . . . , 0,
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are distinct and of order 1. SetZj :={x ∈ |Xj | : νJj ,x > t(x)}. Then Zj is a
Zariski-closed subset of|Xj |. If a ∈ Zj , then the germSinvJ (a) ⊂ Zj (since
alreadySinv1/2

(a) ⊂ Zj ).
We can obtain such a sequence of invJ -admissible transformations ofX and

theJi 0 by choosing as each successive centreCj the locus of the (finitely many)
maximal values of the (extended) invariant inve

J on Zj . The blowings-upσj +1:
Mj +1 → Mj with centresCj form a sequence (12.3) where eachCj ⊂ Σ∗j (and if
a ∈ Cj , thenCj ,a ⊂ Hij ,a for all Hij ∈ E∗(a)). After finitely many blowings-up,
we getZk = ∅. Then all V (Jik ) are smooth and, for eacha ∈ |Xk |, all proper
idealsJik ,a are distinct.

Now, by induction on dimX, we can assume that Theorem 12.4 holds replac-
ing M , X and E by Mk , V (J0k) ⊂ X and Ek\{H0k}. Then the corresponding
sequence of transformations ofMk , Xk and Ek also satisfies (12.3) and 12.4(1).
(The essential point is this: Leta ∈ V (J0k). Since all proper idealsJik ,a are
distinct, it follows thatV (J0k) 6⊂ Hik , i /= 0, and (by Lemma 12.7 below) that
if F is a subset ofEk\{H0k}, and V (J0k) and F simultaneously have normal
crossings ata, then so doXk andF .)

Lemma 12.7. Let W ⊂ Y ⊂ N be smooth spaces, and let F be a collection of
smooth hypersurfaces in N . Let a∈ |N |. If Wa 6⊂ Ha, for all H ∈ F, and W and
F simultaneously have normal crossings at a, then so do Y and F.

The proof of the lemma is simple. The result of our inductive application
of Theorem 12.4 above is that we can assume, in addition to the preceding
conditions, that theV (Jik ), i = −q, . . . , k, simultaneously have normal crossings
at each point ofV (J0k). We can then apply Theorem 12.4 (by induction) toMk ,
V (J−1,k) andEk\{H−1,k}, and afterwards continue for eachi = −2, . . . ,−q, to
arrive at the assumptions of the combinatorial Lemma 12.8 following. (In fact,
in addition to the hypotheses of Lemma 12.8, we have: For eachi = −q, . . . , 0
and eacha ∈ V (Jik ), Ihk,a = Jhk,a, i /= h ≤ 0, andJhk,a = OXk ,a if Dik ,a is a
proper ideal. We will not use this extra information.)

The combinatorial invariant in the proof of 12.8 is a refinement of that in
Theorem 1.13, for the purpose of the stronger conditions required on the centres
of blowing up.

Lemma 12.8. Suppose that, for each a∈ |Xk |: (1) νJik,a
= 0 or 1, for all

i . (2) TheJik , i = −q, . . . , k, simultaneously have normal crossings at a, and
all proper idealsJik ,a are distinct. Then there is a sequence of blowings-upσj +1,
j = k, . . . , `, as in (12.3) with centres Cj admissiblein the stronger sense that each
Cj is the intersection of the V(Jij ) for certain i > 0, such that the conclusion of
Theorem 12.4 holds (i.e., Cj ⊂ Σ∗j , j = k, . . . , `, andΣ∗`+1 = ∅).

Proof. Consider any sequence of blowings-upσj +1, j = k, . . ., whose centres are
admissible in the sense of the lemma. For eachj , the transformsIi ,j +1 of the
Iij = Dij Jij , i ≤ 0, are given byIi ,j +1:=y−1

excσ
−1
j +1(Iij ) = Di ,j +1 · Ji ,j +1, where

Di ,j +1 = y−1
excσ

−1
j +1(Dij ) (becauseCj 6⊂ V (Jij ), i ≤ 0).
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If a ∈ |Xj |, we define τD (a):=#I (a), where I (a):={i = −q, . . . , 0 :
Iij ,a /= Jij ,a}. ThenΣ∗j = {x ∈ |Xj | : τD (a) > 0}. Clearly, τD is Zariski-
semicontinuous on|Xj |. Let a ∈ |Xj |. Then τD admits a presentation ata (of
codimension 0 inXj ) given byH0(a):={(Di , 1) : i ∈ I (a)}, whereDi is a gen-
erator ofDij ,a. (We use “presentation” here in the weaker sense of “with respect
to transformations of type (i)” only (cf. Definition 4.6), where the centres of
blowing up are admissible in the stronger sense above. Invariance will be auto-
matic from the combinatorial definitions, so that transformations of types (ii), (iii)
are unneeded.) LetD∗1 denote the greatest common divisor of theDi , i ∈ I (a).
Write Di = D∗1 · fi , i ∈ I (a). We introduce the invariantν1(a):= min µa(fi ) and
define inv1(a):=

(
τD (a), ν1(a)

)
. Obviously, 0≤ ν1(a) <∞. If ν1(a) = 0, we set

invD (a):=inv1(a); in this case,F1(a):={(D∗1, 1)} is a codimension 0 presenta-
tion of invD at a. Assumeν1(a) > 0 (i.e., ν1(a) ≥ 1, sinceν1(a) ∈ N). Then
F1(a):={(f , µf ) =

(
fi , ν1(a)

)
: i ∈ I (a)} is a codimension 0 presentation of inv1

at a, andµF1(a) = 1.

We can extend inv1 to an invariant invD essentially using the construc-
tion of Chapter II, with Er (a) = ∅ for all r (so there are no termssr in
invD ): Let a ∈ |Xj | and let xi denote a local generator ata of the ideal
Iij ,a = Jij ,a of Xj ∩ Hij , i > 0. For each (f , µf ) ∈ F1(a), we can write
f =

∏
i>0

xαi (f )
i (up to an invertible factor). SinceµF1(a) = 1,

∑
i>0

αi (f ) = µf

for some f , so thatF1(a) ∼ F1(a) ∪ {(xi , 1)} for some i > 0. Let i0 de-
note the least suchi . Then inv1 admits an equivalent codimension 1 presen-

tation
(
N1(a),H1(a)

)
, whereN1(a) = Hi0j ,a and H1(a) =

{( ∏
i/=i0

xαi (f )
i , µf −

αi0(f )
)

: (f , µf ) ∈ F1(a)
}

. We defineν2(a):=µ2(a) − ∑
i0/=i>0

µ2,Hij (a), where

µ2(a):=µH1(a) and eachµ2,Hij (a):= min{µHij ,a(h)/µh : (h, µh) ∈ H1(a)}. Thus
0 ≤ ν2(a) < ∞. We set inv2(a):=

(
inv1(a); ν2(a)

)
; inv2 admits a codimension

1 presentation
(
N1(a),F2(a)

)
at a, whereF2(a):=

{(
D−µh
∗2 · h, µh · ν2(a)

)
, for

all (h, µh) ∈ H1(a), together with
(
D∗2, 1− ν2(a)

)}
andD∗2:=

∏
i/=i0

x
µ2,Hij

(a)

i (cf.

Ch. II). In the case thatν2(a) > 0, it follows thatµF2(a) = 1. The construction
can be repeated in increasing codimension until eventuallyνt+1(a) = 0; then
invD (a):=invt+1(a).

We can obtain a sequence of blowings-upσj +1, j = k, . . ., satisfying the
conditions of the lemma by choosing as each successive centreCj the locus of
the (finitely many) maximal values of the (extended) invariant inve

D on Σ∗j . For
somej , sayj = `, we getΣ∗`+1 = ∅. We have thus proved the lemma and Theorem
12.4. �

Example 12.9. Let X = V (x3 − x1x2) ⊂ k3 = M , and let E = {H0}, where
H0 = V (x3) (cf. Example 2.3, Year one). Clearly,Σ∗0 = {0}. If we use (x1, x2) as
coordinates onX, thenX ∩ H0 = V (I ), whereI ⊂ OX is the ideal generated
by x1x2. Theorem 12.4 prescribesC0 = {0} as the centre of the first blowing-up
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σ1: M1 → M0 = M . ThenE1 = {H01,H11}, whereH01 = H ′0 andH11 = σ−1
1 (C0),

so thatΣ∗1 = X1 ∩ H01∩ H11. The hypotheses of the combinatorial Lemma 12.8
are satisfied byX1, E1; the lemma prescribesC1 = Σ∗1 as the centre of the next
blowing-up σ2: M2 → M1. ThenΣ∗2 = ∅; i.e., X2 and E2 simultaneously have
only normal crossings.

13. Universal desingularization; canonical desingularization of non-compact
analytic spaces

Let A denote a class of spaces in (0.2) (1) or (2). LetX = (|X|,OX ) ∈ A. Then
X can be locally embedded in a manifold; i.e., eacha ∈ |X| admits an open
neighbourhoodU in X such thatX|U can be embedded as a closed subspace
of a smooth spaceM ∈ A. If σ: X ′ → X is a blowing-up ofX with (smooth)
centreC , then, for any local embeddingX|U ↪→ M , σ: X ′|σ−1(U ) → X|U
can be identified with the morphism (X|U )′ → X|U induced by the blowing-up
π: M ′ → M with centreC ∩ U , where (X|U )′ is the strict transform ofX|U
by π. Moreover,σ: X ′ → X is uniquely determined (up to equivalence) by this
condition.

Our invariant invX (as defined in Chapters II, III)a priori depends on a pair
(X,M ), whereM is a manifold andX is a closed subspace ofM . However:

Remarks 13.1.(1) Consider two such pairs (Xi ,M i ), i = 1, 2, and an iso-
morphismϕ: M 1 → M 2 such thatϕ(X1) = X2. Write (Xi

0,M
i
0) = (Xi ,M i )

and Ei
0 = ∅, i = 1, 2, and setϕ0 = ϕ. Suppose we have a sequence of

invX1-admissible transformations ofM 1
0 ,X

1
0 ,E

1
0 as in (1.1). (We will write

(M 1
j +1; X1

j +1,E
1
j +1)

σ1
j +1−→(M 1

j ; X1
j ,E

1
j ), j = 0, 1, . . . , to save space.) Then (by invari-

ance of inv), there is a sequence of invX2-admissible transformations

(M 2
j +1; X2

j +1,E
2
j +1)

σ2
j +1−→(M 2

j ; X2
j ,E

2
j ) and, for eachj , an isomorphismϕj : M 1

j → M 2
j

such thatϕj ◦ σ1
j +1 = σ2

j +1 ◦ ϕj +1, ϕj (X1
j ) = X2

j , ϕj (E1
j ) = E2

j and, moreover,
invX1(a) = invX2

(
ϕj (a)

)
for all a ∈ X1

j (cf. Remarks 9.15).

(2) ConsiderX ↪→ M and an embeddingι: M ↪→ N of M (as a closed
submanifold of a manifoldN ). Write (X0,M0) = (X,M ), (Y0,N0) =

(
ι(X),N

)
,

E0 = F0 = ∅, andι0 = ι. Suppose we have a sequence of invX -admissible trans-

formations (Mj +1; Xj +1,Ej +1)
σj +1−→(Mj ; Xj ,Ej ) (where eachσj +1: Mj +1 → Mj is a

blowing-up ofMj with smooth centreCj ) as in (1.1). It follows from our construc-
tive definition of invX that there is a sequence of invY -admissible transformations

(Nj +1; Yj +1,Fj +1)
τj +1−→(Nj ; Yj ,Fj ) and, for eachj , an embeddingιj : Mj ↪→ Nj , such

that for eachj , τj +1: Nj +1 → Nj is the blowing-up ofNj with centreDj = ιj (Cj ),
ιj ◦ σj +1 = τj +1 ◦ ιj +1, Yj = ι(Xj ), Mj and Fj simultaneously have only normal
crossings,ιj (Ej ) = {Mj ∩ H : H ∈ Fj } and, moreover, invX (a) = invY

(
ιj (a)

)
for all a ∈ |Xj | (cf. Remarks 9.15).
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Universal embedded resolution of singularities.Given X ↪→ M in A and an
invX -admissible sequence (1.1), let inve

X be the extended invariant as in Remark
1.16.

ConsiderX ∈ A (not necessarily globally embedded). Ifa ∈ |X|, then
there is a local embeddingX|U ↪→ M at a in a manifold M of dimension
eX,a = HX,a(1) − 1; eX,a is the minimal embedding dimension and any two
such minimal embeddings are locally related by an isomorphism as in Remarks
13.1 (1).If a ∈ |X|, then invX (a) can be defined using any local embedding
X|U ↪→ M over a neighbourhoodU of a; by 13.1, invX (a) is independent of the
choice of local embedding. (In fact, invX (a) depends only onÔX,a.) SetX0 = X
and letσ1: X1 → X0 denote a blowing-up with centre a smooth invX -admissible
subspaceC0 of X0 = X. By 13.1, invX is defined onX1, independently of a
choice of local embedding ofX, and so on. In other words, the definition of
invX over an admissible sequence of blowings-upσj +1: Xj +1 → Xj extends to
this context. Clearly, the analogue of Theorem 1.14 is true (where property (3)
can be understood in terms of any local embedding, or formally in terms of a
surjective homomorphism tôOX,a from a complete regular local ring).

Suppose that|X| is quasi-compact (or, in the case of analytic spaces, thatX is
the restriction of an analytic space to a relatively compact open subset). Then the
desingularization algorithm of Theorem 1.6 (or 10.7 or 11.14, as the case may
be) applies toX: The compactness hypothesis guarantees that invX takes only
finitely many values on each successive transform ofX. For any local embedding
X|U ↪→ M , the sequence of blowings-up ofX|U induced by that ofX is that
which is given by the proof of 1.6 applied toX|U ↪→ M . By the remarks above,
over eacha ∈ |X|, invX and the desingularization algorithm depend only on
ÔX,a. We obtain the following theorem:

Theorem 13.2. (1) There is a finite sequence of blowings-upσj +1: Xj +1 → Xj ,
where X0 = X , such that, for any local embedding X|U ↪→ M of X , the sequence
of blowings-upσj +1 restricted to the inverse images of U is induced by embedded
desingularization of X|U in the sense of Theorem 1.6 (or Theorem 10.7 or 11.14,
as the case may be).

(2) The desingularization isuniversal in the sense that, to each X inA
satisfying the compactness hypothesis above, we associate a morphismσX: X ′ →
X such that:

(i) σX is a composite of a finite sequence of blowings-up as in (1).

(ii) Let X and Y be two spaces satisfying the compactness hypothesis, and let

ϕ: X |U ∼=−→Y |V be an isomorphism over open subsets U , V of|X|, |Y | (respec-

tively). Then there is an isomorphismϕ′: X ′|σ−1
X (U )

∼=−→Y ′|σ−1
Y (V ) such that the

diagram

X ′|σ−1
X (U )

ϕ′−→ Y ′|σ−1
Y (V )

↓ ↓
X

ϕ−→ Y
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commutes. (The liftingϕ′ of ϕ is necessarily unique.) In fact,ϕ lifts to isomor-
phisms throughout the entire desingularization towers.

Theorem 12.2 on avoiding blowing-up resolved points can be incorporated
in 13.2.

Canonical desingularization of analytic spaces.Finally, we consider desingu-
larization of an analytic spaceX = (|X|,OX ) defined over a locally compact field
k of characteristic zero (i.e.,k = R,C, or a finite extension of the fieldQp of
p-adic numbers, wherep is prime. In the latter case,X is locally a subspace
of a manifold in the sense of Serre [Se].) We assume that|X| is countable at
infinity. In general, of course,X cannot be desingularized by a finite sequence of
global blowings-up with smooth centres. There are two natural ways to generalize
Theorem 13.2 above:

Theorem 13.3. There is a morphismσX: X ′ → X such that, for any relatively
compact open subset U of|X|, the restrictionσX|U : X ′|σ−1

X (U ) → X|U is a
composite of a finite sequence of blowings-up as in Theorem 13.2 (1) (where the
latter is formulated using either Theorem 1.6 or 11.14 locally). Desingularization
of analytic spaces in this sense is universal (as in 13.2 (2)).

Proof. This follows from Theorem 13.2: To every relatively compact open subset
U of |X|, we associate a morphismσX|U : (X|U )′ → (X|U ), whereσX|U is
the composite of a finite sequence of blowings-up as in 13.2(1), so that the
universality condition (2) is satisfied. Thus, ifU ⊂ V are relative compact open
subsets of|X|, the inclusionX|U ↪→ X|V lifts to (X|U )′ ↪→ (X|V )′, andσX is
given by the direct limit. �

The morphismσX of Theorem 13.3 is not defined as a composite of global
blowings-up with smooth centres. We can obtain resolution of singularities of
analytic spaces in this stronger way, but at the expense of weakening the notion
of universality:

We say that a sequence of blowings-up−→ Xj +1
σj +1−→Xj−→· · ·−→X0 = X is

locally finite if all but finitely many of the blowings-upσj +1 are trivial over any
compact subset of|X|. The composite of a locally finite sequence of blowings-up
is a well-defined morphismσ: X ′ → X.

Theorem 13.4. There is a locally finite sequence of blowings-upσj +1: Xj +1 → Xj

with smoothinvX-admissible centres Cj ⊂ Xj (where X0 = X ) such that
(1) For each j , either Cj ⊂ SingXj or Xj is smooth and Cj ⊂ Ej .
(2) Letσ: X ′ → X denote the composite of the sequence of blowings-upσj +1.

Then X′ is smooth, and X′,E′ simultaneously have only normal crossings (where
E′ denotes the collection of all exceptional divisors).

(3) σ is canonical in the sense that any isomorphismϕ: X |U ∼=−→X|V , where
U and V are open subsets of|X|, lifts to an isomorphismϕ′: X ′|σ−1(U ) →
X ′|σ−1(V ).
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The assertions concerningEj andE′ can be understood locally, for example
as in Theorem 1.6, using an embeddingX|U ↪→ M over a relatively compact
open subset of|X|. Of course,X ′ may be empty (as in 1.6); Theorem 13.4 is
a meaningful geometric desingularization theorem at least in the case thatX is
geometric (Definition 10.5). Every reduced complex analytic space is geometric.
Our proof below can also be used to extend Theorem 1.10 to the non-compact
analytic case, in general.

Proof of Theorem 13.4.We will use the algorithm of Theorem 1.6 locally (over a
relatively compact open subsetU of |X|, say), extending each centre of blowing-
up to a global analytic subspace ofX and desingularizing this subspace (using
induction on dimension) by a locally finite sequence of invX -admissible blowings-
up which are trivial overU . As in the proof of 1.6 (Sect. 10), we first find a locally
finite sequence of blowings-upσj +1 with invX -admissible centresCj ⊂ SingXj

such that, ifσ: X ′ → X denotes the composite of the sequence, thenX ′ is
smooth. Afterwards, we repeat the algorithm using{x : s1(x) > 0} instead of
SingXj at every stage (as in Sect. 10) to achieve the normal crossings condition.
We will describe only the first of the two steps.

Since|X| can be exhausted by a sequence of relatively compact open subsets,
it is enough to prove the following assertion: LetU be a relatively compact
open subset of|X|. Then there is a locally finite sequence of blowings-upσj +1:
Xj +1 → Xj with smooth invX -admissible centresCj ⊂ Xj , satisfying (3) of the
theorem as well as:

(1′) EachCj ⊂ SingXj .
(2′) If σ: X ′ → X denotes the composite of theσj +1, then Sing(X ′|σ−1(U )) =

∅.
To prove this assertion, consider the resolution algorithm of Theorem 1.6

applied toX|U (as in Theorem 13.2); say that

(13.5) · · · −→ (X|U )j +1 −→ (X|U )j −→ · · · −→ (X|U )0 = X|U
is the sequence of blowings-up given by the algorithm (for the first of the two
steps; i.e., to reduce to the case that Sing(X|U )′ = ∅). We can assume that each
centre of blowing upCj is pure-dimensional (by using, for example, as each
successiveCj , the lowest-dimensional components of the maximum locus of
inve

X|U in Sing(X|U )j , where the extended invariant inve
X is fixed as in Remark

1.16 ). Suppose we have a (locally finite) sequence of invX -admissible blowings-
up of X satisfying (1′) and (3) and restricting, overU , to part of the resolution
tower (13.5); let us say, to that part up to (X|U )j (apart from blowings-up that
are trivial overU ). Let σ0: X0 → X denote the composite of this sequence
of blowings-up ofX, so that the restrictionσ0: X0|(σ0)−1(U ) → X|U can be
identified with the composite (X|U )j → X|U in (13.5).

Set V = (σ0)−1(U ). Let Λ denote the (finite) set of maximal valuesλ =
inve

X (a) of inve
X on Sing(X0|V ), and letS :=

⋃
λ∈Λ{x ∈ Sing(X0|V ) : inve

X (a) =
λ}. ThenS defines a smooth closed subspace ofX0|V (by Remarks 10.3, as in
the proof of Theorem 1.6). For eachλ ∈ Λ, let Tλ denote the smallest closed
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analytic subspace ofX0 such that|Tλ| = {x ∈ SingX0 : inve
X (x) ≥ λ}. (The

latter is Zariski-closed since inve
X is Zariski-semicontinuous; cf. Remark 6.14.)

Let Sq denote the union of the components ofS of the smallest dimension
q. Let T denote the union of the components of

⋃
λ∈Λ Tλ of dimensionq;

T is a well-defined closed analytic subspace ofX0. Clearly, T|V = Sq and⋃
λ∈Λ{x ∈ |T| : inve

X (x) = λ} is Zariski-open in|T|.
Our aim is to desingularizeX1 = T by a locally finite sequence of invX -

admissible blowings-up ofX0 which is trivial overV and satisfies (1′) and (3),
such that invX is locally constant on the final (smooth) transformT ′ of T. Then
T ′ provides a centre for a blowing-up that restricts to (X|U )j +1 → (X|U )j in
(13.5), and the theorem follows recursively. We achieve the aim by an inductive
construction, for the purpose of which we formulate a more general problem.
(The result needed is Lemma 13.7 withk = 1).

Consider a decreasing chain of pure-dimensional closed analytic subspaces
of X0, X1 ⊃ X2 ⊃ · · · ⊃ Xk , k ≥ 1, such that|X1| ⊂ SingX0, dimX1 < ∞,
and dimXi +1 < dimXi , i = 1, . . . , k − 1. Assume that eachXi is preserved by
the liftings of local isomorphisms ofX given by the canonicity condition onσ0:
X0 → X. Consider a locally finite sequence of invX -admissible blowings-up

(13.6) · · · −→ X0
j +1

σj +1−→ X0
j −→ · · · −→ X0

0 = X0

with smooth centresCj ⊂ X0
j , where for eachi = 1, . . . , k and eachj =

0, 1, . . . , Xi
j +1 denotes the smallest closed analytic subspace ofX0

j +1 contain-

ing σ−1
j +1(Xi

j )\σ−1
j +1(Cj ). Then, for eachj , SingX0

j ⊃ |X1
j |, X1

j ⊃ · · · ⊃ Xk
j , and

Xi
j is pure-dimensional and dimXi +1

j < dimXi
j , i ≥ 1. For eachj , we define

ιk(a) :=
(
invX (a),HX1

j ,a
, . . . ,HXk

j ,a

)
, a ∈ |X0

j |. (Say thatιk(a) ≤ ιk(b) means

componentwise≤.)

Lemma 13.7. There is a locally finite sequence of blowings-up (13.6) with smooth
ιk-admissible centres Cj ⊂ Xk

j such that:
(1) For each j , Cj is pure-dimensional and Cj includes no point a at which Xkj is
smooth andιk is locally constant on|Xk

j |.
(2) For each i = 0, . . . , k, let (Xi )′ denotelim← Xi

j . (In particular, the induced

morphismσ: (X0)′ → X0 is the composite of theσj +1.) Then(Xk)′ is smooth and(
invX ,H(X1)′,·, . . . ,H(Xk )′,·) is locally constant on|(Xk)′|.

(3) σ0 ◦ σ: (X0)′ → X satisfies the canonicity condition 13.4 (3), and each(Xi )′

is preserved by the liftings of the local isomorphisms of X given by canonicity.

Proof . Our proof is by induction on dimXk . (The case of dimension zero is
trivial.) It is enough to prove the following assertion: LetU be a relatively
compact open subset of|X|, and letV = (σ0)−1(U ). Then there is a locally finite
sequence of blowings-up (13.6) with smoothιk-admissible centresCj ⊂ Xk

j such
that (1) and (3) of the lemma hold, and (2) holds on the inverse image ofV .

Write X := (X0,X1, . . . ,Xk). Given a sequence (13.6), we define inv1/2(a) :=
ιk(a), a ∈ |X0

j |. (In the analytic case here) it is easy to see that each term of



Canonical desingularization in characteristic zero 301

ιk(·) admits a (semicoherent) codimension zero presentation; the union of these
presentations is a codimension zero presentation ofιk(·). Therefore, we can use
the construction of Sect. 6 to extend inv1/2 to an invariant invX (a), provided that
the centres of blowing upCj are chosen successively to be invX (a)-admissible.
Sinceιk(·) includesHXk

j ,·
, invX is also locally constant on|Xk

j | at a pointa as

in (1).
We can use an analogue for invX of the algorithm of Theorem 1.6 to prove

Lemma 13.7 forX|V : For eachj , let Vj denote the inverse image ofV in
|X0

j |. We can take as each successive centre the smallest dimensional compo-
nents of maximum locus of inve

X on Yk
j , whereYk

j denotes the complement in
Xk

j |Vj of the smooth components of the latter on which inve
X is constant. (These

components are necessarily open and closed.) We obtain a finite sequence of
blowings-up ofX0|V with smooth invX -admissible centres, satisfying the con-
ditions of the lemma forX|V . Again we want to extend the successive centres
to global analytic subspaces and resolve their singularities (which lie outside the
Vj ) by the inductive assumption.

Suppose we have a locally finite sequence (13.6) of invX -admissible blowings-
up of X0 satisfying (1) and (3) of the lemma, and restricting overV to part of
the resolution tower forX|V . Write Xi

• := lim← Xi
j , i = 0, . . . , k. (In particular, the

induced morphismσ•: X0
• → X0 is the composite of the sequence of blowings-

up.)
SetW = σ−1

• (V ). LetΛ denote the (finite) set of maximal valuesλ = inve
X (a)

of inve
X on Yk

• (where Yk
• denotes the complement inXk

• | W of the smooth
components of the latter on which inve

X is constant), and letS :=
⋃
λ∈Λ{x ∈

Yk
• : inve

X (a) = λ}. Then S defines a smooth closed subspace ofXk
• |W and

dimS < dimXk
• . For eachλ ∈ Λ, let Tλ denote the smallest closed analytic

subspace ofXk
• such that|Tλ| = {x ∈ Xk

• : inve
X (x) ≥ λ}. Let Sq denote the

union of the components ofS of the smallest dimensionq. Let Xk+1
• denote the

union of the components of
⋃
λ∈Λ Tλ of dimensionq. Then Xk+1

• |W = Sq and⋃
λ∈Λ{x ∈ |Xk+1

• | : inve
X (x) = λ} is Zariski-open in|Xk+1

• |.
By induction on the dimension of the last spaceXk+1

• , we can assume that
Lemma 13.7 holds forX0

• ⊃ X1
• ⊃ · · · ⊃ Xk+1

• . The sequence of blowings-up
involved will be trivial overW, and the final transform ofXk+1

• will be a smooth
extension ofS above on whichιk is locally constant. �
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